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Abstract

During years the basic mathematical and conceptual building bricks of quantum TGD have
become rather obvious. The basic goal is the construction of scattering amplitudes.

1. Zero Energy Ontology (ZEO) forces to generalize the notion of S-matrix by introducing
M-matrix as a matrix characterizing the entanglement between pairs of states forming
zero energy states.

2. Second building brick consists of various hierarchies and connections between them.
There is the hierarchy of quantum criticalities for super-symplectic algebra and its Yan-
gian extension acting as a spectrum generating algebra. This hierarchy is closely re-
lated to the hierarchy of Planck constants heff = n × h. The hierarchies of criticalities
correspond also to fractal hierarchies of breakings of super-symplectic gauge conformal
symmetry: only the sub-algebra isomorphic to the original gauge algebra acts as gauge
algebra after the breaking. At each step one criticality is reduced and the number of
physical degrees of freedom increases.

There is a natural connection between these hierarchies with the hierarchies of hyperfinite
factors of type II1 (HFFs) and their inclusions providing a description for the notion of
measurement resolution.

3. Number theoretic realized as adelic physics fusing real number based physics as a cor-
relate of sensory experience and p-adic physics as correlate of cognition involves several
elements: M8 − H duality, hierarchy of effective Planck constants heff = nh0 with n
identified as a dimension of extension of rationals, cognitive representations characterized
by extensions of rationals, and p-adic length scale hypothesis.

The identification of the TGD counterpart of S-matrix is the key topic of this chapter.
What this matrix actually means is far from obvious.

1. One can characterize zero energy state by a ”square root” of density matrix which is
product of hermitian matrix and unitary matrix: I have called this matrix M -matrix.
The unitary matrix related to the M -matrix could relate closely to the S-matrix assigned
with particle reactions.

2. One can assign the analog of unitary S-matrix to ”small” state function reductions
(SSFRs) defining the TGD counterparts of ”weak” measurements. The states at the
passive boundary PB are unaffected, which has interpretation as the TGD counterpart
of Zeno effect. This S-matrix could relate to the evolution of self as a conscious entity
and to its cognitive time evolution.

3. One can also assign an S-matrix like entity to ”big” SFRs (BSFRs) in which the arrow
of time changes. This S-matrix would be the counterpart of the ordinary S-matrix and
should closely relate to the M -matrix.

4. I have also introduced the notion of U -matrix, which would be defined between zero
energy states without fixing states at the passive boundary essential for fixing the arrow
of time. This notion has remained somewhat misty and it seems that it is not needed
since the matrices assigned SSFRs and BSFRs indeed are between zero energy states.

The construction of these matrices is discussed at the general level.

1 Introduction

Quantum criticality has been the key idea from beginning but its understanding has evolved rather
slowly. Quantum criticality accompanies several hierarchies: hierarchy of p-adic length scales and
hierarchy of space-time sheets glued to larger space-timer sheets; hierarchy of Planck constants
labelling phases of ordinary matter behaving like dark matter; hierarchy of breakings of super-
symplectic symmetry represented as gauge symmetry; hierarchy of causal diamonds (CDs); hierar-
chies of inclusions of hyperfinite factors of type II1 (HFFs); hierarchies of extensions of extensions
of of rationals emerging in M8 picture about TGD; hierarchies of conscious entities with lower
level represented as mental images.
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1.1 Zero energy ontology and the interpretation of light-like 3-surfaces
as generalized Feynman diagrams

Zero energy ontology (ZEO) is discussed in [K30] but its role in the construction of scattering
amplitudes deserves a brief discussion also here.

1. ZEO is the cornerstone of the construction. Zero energy states have vanishing net quantum
numbers and consist of positive and negative energy parts, which can be thought of as being
localized at the boundaries of light-like 3-surface X3

l connecting the light-like boundaries
of a causal diamond CD identified as intersection of future and past directed light-cones.
There is entire hierarchy of CDs, whose scales are suggested to come as powers of 2. A
more general proposal is that prime powers of fundamental size scale are possible and would
conform with the most general form of p-adic length scale hypothesis. The hierarchy of size
scales assignable to CDs corresponds to a hierarchy of length scales and code for a hierarchy
of radiative corrections to generalized Feynman diagrams.

2. Either space-like 3-surfaces at the boundaries of CDs or light-like 3-surfaces connecting the
boundaries of CDs can be seen as the basic dynamical objects of quantum TGD and have
interpretation as generalized Feynman diagrams having light-like 3-surfaces as lines glued to-
gether along their ends defining vertices as 2-surfaces. By effective 2-dimensionality (hologra-
phy) of light-like 3-surfaces the interiors of light-like 3-surfaces are analogous to gauge degrees
of freedom and partially parameterized by Kac-Moody group respecting the light-likeness of
3-surfaces. This picture differs dramatically from that of string models since light-like 3-
surfaces replacing stringy diagrams are singular as manifolds whereas 2-surfaces representing
vertices are not.

3. String word sheets and partonic 2-surfaces however appear also in TGD as carriers of spinor
modes: this follows from the condition that em charge is well defined for the modes. The
condition follows also from number theoretic arguments and is assumed quite generally. This
has far reaching consequences for the understanding of gravitation in TGD framework and
profound deviations from string models are predicted due to the hierarchy of Planck con-
stants absolutely essential for the description of gravitational bound states in terms of strings
connecting partonic 2-surfaces. Macroscopic quantum coherence in even astrophysical scales
is predicted [?, K22].

1.2 About the identification of various TGD counterparts of S-matrix

The identification of the TGD counterpart of S-matrix is the key topic of this chapter. What
this matrix actually means is far from obvious.

1. One can characterize zero energy state by a ”square root” of density matrix which is product
of hermitian matrix and unitary matrix: I have called this matrix M -matrix. The unitary
matrix related to the M -matrix could relate closely to the S-matrix assigned with particle
reactions.

2. One can assign the analog of unitary S-matrix to ”small” state function reductions (SSFRs)
defining the TGD counterparts of ”weak” measurements. The states at the passive boundary
PB are unaffected, which has interpretation as the TGD counterpart of Zeno effect. This
S-matrix could relate to the evolution of self as a conscious entity and to its cognitive time
evolution [L26, L30].

3. One can also assign an S-matrix like entity to ”big” SFRs (BSFRs) in which the arrow of
time changes. This S-matrix would be the counterpart of the ordinary S-matrix and should
closely relate to the M -matrix.

4. I have also introduced the notion of U -matrix, which would be defined between zero energy
states without fixing states at the passive boundary essential for fixing the arrow of time.
This notion has remained somewhat misty and it seems that this notion is not needed since
the matrices assigned SSFRs and BSFRs indeed are between zero energy states.
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The TGD counterpart of S-matrix - call it M -matrix- defines time-like entanglement coefficients
between positive and negative energy parts of zero energy state located at the light-like boundaries
of CD.

1. M -matrix need not be unitary unlike the U -matrix characterizing the unitary process forming
part of quantum jump. There are several arguments suggesting that M -matrix cannot be
unitary but can be regarded as thermal S-matrix so that thermodynamics would become
an essential part of quantum theory. In fact, M -matrix can be decomposed to a product
of positive diagonal matrix identifiable as square root of density matrix and unitary matrix
so that quantum theory would be kind of square root of thermodynamics. Path integral
formalism is given up although functional integral over the 3-surfaces is present.

2. In the general case only thermal M -matrix defines a normalizable zero energy state so that
thermodynamics or at least formalism resembling thermodynamics becomes part of quantum
theory. One can assign to M -matrix a complex parameter whose real part has interpretation
as interaction time and imaginary part as the inverse temperature.

In the chapter “Zero energy ontology, hierarchy of Planck constants, and Kähler metric re-
placing unitary S-matrix: three pillars of new quantum theory” [K31] of this book, the idea that
scattering amplitudes could allow a geometrization in terms of the Kähler metric of WCW is con-
sidered. The role of M8 − H duality in the construction of scattering amplitudes as M -matrix
is discussed in chapter “Breakthrough in understanding of M8 − H duality” [K5] of this book.
The idea would be that the descriptions at the level of M8 and H provide momentum-space and
space-time descriptions of the scattering amplitudes.

1.3 Topics of the chapter

The first sections provide conceptual background for the attempts to identify scattering amplitudes
in TGD framework. The other chapters discuss more detailed attempts.

1.3.1 M8−H duality, hierarchy of Planck constants, and p-adic length scale hypothess

M8 −H duality provides a cornerstone of TGD and one can consider the construction of scatter-
ing amplitudes both at M - and H-level. This motivates the discussion of in the section “About
relationship between M8 − H duality, hierarchy of Planck constants, and p-adic length scale hy-
pothesis”.

The meaning of M8 − H duality in fermionic sector is considered in the section “Fermionic
variant of M8 −H duality”. The role of second quantized spinors in H is well-understood but in
M8 the situation is different. The basic guideline is that also fermionic dynamics at the level of
M8 should be algebraic and number theoretical.

1. Spinors should be octonionic. I have already earlier considered their possible physical inter-
pretation [L1].

2. Dirac equation as linear partial differential equation should be replaced with a linear algebraic
equation for octonionic spinors which are complexified octonions. The momentum space
variant of the ordinary Dirac equation is an algebrac equation and the proposal is obvious:
PΨ = 0, where P is the octonionic continuation of the polynomial defining the space-time
surface and multiplication is in octonionic sense. The conjugation in Oc is induced by the
conjugation of the commuting imaginary unit i. The square of the Dirac equation is real if
the space-time surface corresponds to a projection Oc →M8 →M4 with real time coordinate
and imaginary spatial coordinates so that the metric defined by the octonionic norm is real
and has Minkowskian signature. Hence the notion of Minkowski metric reduces to octonionic
norm for Oc - a purely number theoretic notion.

The masslessness condition restricts the solutions to light-like 3-surfaces mklP
kP l = 0 in

Minkowskian sector analogous to mass shells in momentum space - just as in the case of
ordinary massless Dirac equation. P (o) rather than octonionic coordinate o would define
momentum. These mass shells should be mapped to light-like partonic orbits in H.
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3. This picture leads to the earlier phenomenological picture about induced spinors in H.
Twistor Grassmann approach suggests the localization of the induced spinor fields at light-
like partonic orbits in H. If the induced spinor field allows a continuation from 3-D partonic
orbits to the interior of X4, it would serve as a counterpart of virtual particle in accordance
with quantum field theoretical picture.

1.3.2 Hyper-finite factors and M-matrix

The notion of hyper-finite factor is expected to play central role in the mathematical description
of finite measurement resolution, in the realization of the hierarchy of Planck constants [K11, ?],
the hierarchy quantum criticalities, and the hierarchy of gauge symmetry breakings for the super-
symplectic algebra. This motivates the discussion of the basic results and ideas are about HFFs.
The views about M -matrix as a characterizer of time-like entanglement and M -matrix as a functor
are analyzed. The role of hyper-finite factors in the construction of M -matrix is considered. One
section is devoted to the possibility that Connes tensor product could define fundamental vertices.
A more detailed discussion can be found in the book [K13], in particular in chapter [K28].

I do not pretend of having handle about the huge technical complexities and can only recom-
mend the works of von Neumann [A18, A22, A20, A15]. Tomita [A17]. [B2, B1, B3]. the work of
Powers and Araki and Woods which served as starting point for the work of Connes [A5, A4]. The
work of Jones [A11], and other leading figures in the field. What is may main contribution is fresh
physical interpretation of this mathematics which also helps to make mathematical conjectures.
The book of Connes [A5] available in web provides an excellent overall view about von Neumann
algebras and non-commutative geometry.

The role of HFFs in the construction of M -matrix is considered in the section “A vision about
the role of HFFs in TGD”.

1.3.3 Number theoretic approch to the S-matrix associated with SFRs

Adelic physics, M8 −H duality, and ZEO to a proposal that the dynamics involved with “small”
state function reductions (SSFRs) as counterparts of ”weak” measurements could be basically
number theoretical dynamics with SSFRs identified as SFR cascades leading to completely un-
entangled state in the space of wave functions in Galois group of extension of rationals identifiable
as wave functions in the space of cognitive representations. This is discussed in the section “it The
dynamics of SSFRs as quantum measurement cascades in the group algebra of Galois group” [L26].

As a side product a prime factorization of the order of Galois group is obtained. The result
looks even more fascinating if the cognitive dynamics is a representation for the dynamics in real
degrees of freedom in finite resolution characterized by the extension of rationals. If cognitive
representations represent reality approximately, this indeed looks very natural and would provide
an analog for adele formula expressing the norm of a rational as the inverse of the product of is
p-adic norms. The results can be appplied to the TGD inspired model of genetic code.

The last section “it The relation between U -Matrix and M -matrices” includes some old and
perhaps obsolete speculations about the admittedly misty U -matrix. The negative and positive
energy parts of zero energy state can contain zero energy parts in shorter scales - quantum field
theorist might talk about quantum fluctuations. One can have also U -matrix and M -matrix
elements between this kind of states and even between zero energy states and a hierarchy suggests
itself. Since fermions could be seen as correlates of Boolean cognition and zero energy states in
fermion sectors as quantal Boolean statements, one can ask whether these matrices could define
Boolean hierarchies: statements about statements about...

2 About M 8−H-duality, p-adic length scale hypothesis and
dark matter hierarchy

M8 −H duality, p-adic length scale hypothesis and dark matter hierarchy as phases of ordinary
matter with effective Planck constant heff = nh0 are basic assumptions of TGD, which all reduce
to number theoretic vision. In the sequel M8−H duality, p-adic length scale hypothesis and dark
matter hierarchy are discussed from number theoretic perspective.
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Several new results emerge. Strong form of holography (SH) allows to weaken strong form
of M8 − H duality mapping space-time surfaces X4 ⊂ M8 to H = M4 × CP2 that it allows to
map only certain complex 2-D sub-manifolds of quaternionic space-time surface to H: SH allows
to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds are determined by conditions
completely analogous to those determined space-time surface as quaternionic sub-manifold and
only discrete set of them is obtained.

M8 duality allows to relate p-adic length scales Lp to differences for the roots of the polynomial
defining the extension defining “special moments in the life of self” assignable causal diamond (CD)
central in zero energy ontology (ZEO). Hence p-adic length scale hypothesis emerges both from
p-adic mass calculations and M8 −H duality. It is proposed that the size scale of CD correspond
to the largest dark scale nLp for the extension and that the sub-extensions of extensions could
define hierarchy of sub-CDs. Skyrmions are an important notion if nuclear and hadron physics,
M8 −H dyality suggests an interpretation of skyrmion number as winding number as that for a
map defined by complex polynomial.

2.1 Some background

A summary of the basic notions and ideas involved is in order.

2.1.1 p-Adic length scale hypothesis

In p-adic mass calculations [K16] real mass squared is obtained by so called canonical identification
from p-adic valued mass squared identified as analog of thermodynamical mass squared using p-adic
generelization of thermodynamics assuming super-conformal invariance and Kac-Moody algebras
assignable to isometries ad holonomies of H = M4 × CP2. This implies that the mass squared is
essentially the expectation value of sum of scaling generators associated with various tensor factors
of the representations for the direct sum of super-conformal algebras and if the number of factors
is 5 one obtains rather predictive scenario since the p-adic temperature Tp must be inverse integer
in order that the analogs of Boltzmann factors identified essentially as pL0/Tp .

The p-adic mass squared is of form Xp+O(p2) and mapped to X/p+O(1/p2). For the p-adic
primes assignable to elementary particles (M127 = 2127−1 for electron) the higher order corrections
are in general extremely small unless the coefficient of second order contribution is larger integer
of order p so that calculations are practically exact.

Elementary particles seem to correspond to p-adic primes near powers 2k. Corresponding p-
adic length - and time scales would come as half-octaves of basic scale if all integers k are allowed.
For odd values of k one would have octaves as analog for period doubling. In chaotic systems also
the generalization of period doubling in which prime p = 2 is replaced by some other small prime
appear and there is indeed evidence for powers of p = 3 (period tripling as approach to chaos).
Many elementary particles and also hadron physics and electroweak physics seem to correspond to
Mersenne primes and Gaussian Mersennes which are maximally near to powers of 2.

For given prime p also higher powers of p define p-adic length scales: for instance, for electron
the secondary p-adic time scale is .1 seconds characterizing fundamental bio-rhythm. Quite gen-
erally, elementary particles would be accompanied by macroscopic length and time scales perhaps
assignable to their magnetic bodies or causal diamonds (CDs) accompanying them.

This inspired p-adic length scale hypothesis stating the size scales of space-time surface corre-
spond to primes near half-octaves of 2. The predictions of p-adic are exponentially sensitive to the
value of k and their success gives strong support for p-adic length scale hypothesis. This hypoth-
esis applied not only to elementary particle physics but also to biology and even astrophysics and
cosmology. TGD Universe could be p-adic fractal.

2.1.2 Dark matter as phases of ordinary matter with heff = nh0

The identification of dark matter as phases of ordinary matter with effective Planck constant
heff = nh0 is second key hypothesis of TGD. To be precise, these phases behave like dark matter
and galactic dark matter could correspond to dark energy in TGD sense assignable to cosmic
strings thickened to magnetic flux tubes.
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There are good arguments in favor of the identification h = 6h0 [L2, L11]. “Effective” means
that the actual value of Planck constant is h0 but in many-sheeted space-time n counts the number
of symmetry related space-time sheets defining space-time surface as a covering. Each sheet gives
identical contribution to action and this implies that effective value of Planck constant is nh0.

2.1.3 M8 −H duality

M8 − H duality (H = M4 × CP2) [L16] has taken a central role in TGD framework. M8 − H
duality allows to identify space-time regions as ”roots” of octonionic polynomials P in complexified
M8 - M8

c - or as minimal surfaces in H = M4 × CP2 having 2-D singularities.
Remark:Oc,Hc,Cc,Rc will be used in the sequel for complexifications of octonions, quaternions,

etc.. number fields using commuting imaginary unit i appearing naturally via the roots of real
polynomials.

The precise form of M8 − H duality has however remained unclear. Two assumptions are
involved.

1. Associativity stating that the tangent or normal space of at the point of the space-time
space-time surface M8 is associative - that is quaternionic. There are good reasons to believe
that this is true for the polynomial ansatz everywhere but there is no rigorous proof.

2. The tangent space of the point of space-time surface at points mappable from M8 to H must
contain fixed M2 ⊂ M4 ⊂ M8 or an integrable distribution of M2(x) so that the 2-surface
of M4 determined by it belongs to space-time surface.

The strongest, global form of M8−H duality states that M2(x) is contained to tangent spaces
of X4 at all points x. Strong form of holography (SH) states allows also the option for which this
holds true only for 2-D surfaces - string world sheets and partonic 2-surfaces - therefore mappable
to H and that SH allows to determined X4 ⊂ H from this data. In the following a realization of
this weaker form of M8−H duality is found. Note however that one cannot exclude the possibility
that also associativity is true only at these surfaces for the polynomial ansatz.

2.1.4 Number theoretic origin of p-adic primes and dark matter

There are several questions to be answered. How to fuse real number based physics with various
p-adic physics? How p-adic length scale hypothesis and dark matter hypothesis emerge from TGD?

The properties of p-adic number fields and the strange failure of complete non-determinism for
p-adic differential equations led to the proposal that p-adic physics might serve as a correlate for
cognition, imagination, and intention. This led to a development of number theoretic vision which
I call adelic physics. A given adele corresponds to a fusion of reals and extensions of various p-adic
number fields induced by a given extension of rationals.

The notion of space-time generalizes to a book like structure having real space-time surfaces
and their p-adic counterparts as pages. The common points of pages defining is back correspond to
points with coordinates in the extension of rationals considered. This discretization of space-time
surface is in general finite and unique and is identified as what I call cognitive representation. The
Galois group of extension becomes symmetry group in cognitive degrees of freedom. The ramified
primes of extension are exceptionally interesting and are identified as preferred p-adic primes for
the extension considered.

The basic challenge is to identify dark scale. There are some reasons to expect correlation
between p-adic and dark scales which would mean that the dark scale would depend on ramified
primes, which characterize roots of the polynomial defining the extensions and are thus not defined
completely by extension alone. Same extension can be defined by many polynomials. The näıve
guess is that the scale is proportional to the dimension n of extension serving as a measure for
algebraic complexity (there are also other measures). p-Adic length scales Lp would be proportional
nLp, p ramified prime of extension? The motivation would be that quantum scales are typically
proportional to Planck constant. It turns out that the identification of CD scale as dark scale is
rather natural.
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2.2 New results about M8 −H duality

In the sequel some new results about M8−H duality are deduced. Strong form of holography (SH)
allows to weaken the assumptions making possible M8 −H duality. It would be enough to map
only certain complex 2-D sub-manifolds of quaternionic space-time surface in M8 to H: SH would
allow to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds would be determined
by conditions completely analogous to those determined space-time surface as quaternionic sub-
manifold and they form a discrete set.

2.2.1 Strong form of holography (SH)

Ordinary 3-D holography is forced by general coordinate invariance (GCI) and loosely states that
the data at 3-D surfaces allows to determined space-time surface X4 ⊂ H. In ZEO 3-surfaces
correspond to pairs of 3-surfaces with members at the opposite light-like boundaries of causal
diamond (CD) and are analogous to initial and final states of deterministic time evolution as Bohr
orbit.

This poses additional strong conditions on the space-time surface.

1. The conjecture is that these conditions state the vanishing of super-symplectic Noether
charges for a sub-algebra of super-symplectic algebra SCn with radial conformal weights
coming as n-multiples of those for the entire algebra SC and its commutator [SCn, SC] with
the entire algebra: these conditions generalize super conformal conditions and one obtains a
hierarchy of realizations.

This hierarchy of minimal surfaces would naturally corresponds to the hierarchy of extensions
of rationals with n identifiable as dimension of the extension giving rise to effective Planck
constant. At the level of Hilbert spaces the inclusion hierarchies for extensions could also
correspond to the inclusion hierarchies of hyper-finite factors of type I1 [K28] so that M8−H
duality would imply beautiful connections between key ideas of TGD.

2. Second conjecture is that the preferred extremals (PEs) are extremals of both the volume
term and Kähler action term of the action resulting by dimensional reduction making possible
the induction of twistor structure from the product of twistor spaces of M4 and CP2 to 6-D
S2 bundle over X4 defining the analog of twistor space. These twistor spaces must have
Kähler structure since action for 6-D surfaces is Kähler action - it exists only in these two
cases [A13] so that TGD is unique.

Strong form of holography (SH) is a strengthening of 3-D holography. Strong form of GCI
requires that one can use either the data associated either with

• light-like 3-surfaces defining partonic orbits as surfaces at which signature of the induced
metric changes from Euclidian to Minkowskian or

• the space-like 3-surfaces at the ends of CD to determine space-time surface as PE (in case
that it exists).

This suggests that the data at the intersections of these 2-surfaces defined by partonic 2-surfaces
might be enough for holography. A slightly weaker form of SH is that also string world sheets
intersecting partonic orbits along their 1-D boundaries is needed and this form seems more realistic.

SH allows to weaken strong form of M8−H duality mapping space-time surfaces X4 ⊂M8 to
H = M4×CP2 that it allows to map only certain complex 2-D sub-manifolds of quaternionic space-
time surface to H: SH allows to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds
are determined by conditions completely analogous to those determined space-time surface as
quaternionic sub-manifold and only discrete set of them is obtained.

2.2.2 Space-time as algebraic surface in M8
c regarded complexified octonions

The octonionic polynomial giving rise to space-time surface as its “root” is obtained from ordi-
nary real polynomial P with rational coefficients by algebraic continuation. The conjecture is
that the identification in terms of roots of polynomials of even real analytic functions guarantees



2.2 New results about M8 −H duality 11

associativity and one can formulate this as rather convincing argument [?] Space-time surface X4
c

is identified as a 4-D root for a Hc-valued “imaginary” or “real” part of Oc valued polynomial
obtained as an Oc continuation of a real polynomial P with rational coefficients, which can be
chosen to be integers. These options correspond to complexified-quaternionic tangent- or normal
spaces. For P (x) = xn + .. ordinary roots are algebraic integers. The real 4-D space-time surface
is projection of this surface from M8

c to M8. One could drop the subscripts ”c” but in the sequel
they will be kept.

M4
c appears as a special solution for any polynomial P . M4

c seems to be like a universal
reference solution with which to compare other solutions.

One obtains also brane-like 6-surfaces as 6-spheres as universal solutions. They have M4

projection, which is a piece of hyper-surface for which Minkowski time as time coordinate of CD
corresponds to a root t = rn of P . For monic polynomials these time values are algebraic integers
and Galois group permutes them.

One cannot exclude rational functions or even real analytic functions in the sense that Taylor
coefficients are octonionically real (proportional to octonionic real unit). Number theoretical vision
- adelic physics [?, ?] suggests that polynomial coefficients are rational or perhaps in extensions of
rationals. The real coefficients could in principle be replaced with complex numbers a+ ib, where
i commutes with the octonionic units and defines complexifiation of octonions. i appears also in
the roots defining complex extensions of rationals.

2.2.3 How do the solutions assignable to the opposite boundaries of CD relate to
each other?

CD has two boundaries. The polynomials associated with them could be different in the general
formulation discussed in [L24, L26] but they could be also same. How are the solutions associated
with opposite boundaries of CD glued together in a continuous manner?

1. The polynomials assignable to the opposite boundaries of CD are allowed to be polynomials
of o resp. (o− T ): here T is the distance between the tips of CD.

2. CD brings in mind the realization of conformal invariance at sphere: the two hemispheres
correspond to powers of z and 1/z: the condition z = 1/z at unit circle is essential and there
is no real conjugation. How the sphere is replaced with 8-D CD which is also complexified.
The absence of conjugation looks natural also now: could CD contain a 3-surface analogous
to the unit circle of sphere at which the analog of z = 1/z holds true? If so, one has
P (o, z) = P (1/o, z) and the solutions representing roots fo P (o, z) and P (1/o, z) can be
glued together.

Note that 1/o can be expressed as o/oo when the Minkowskian norm squared oo is non-
vanishing and one has polynomial equation also now. This condition is true outside the
boundary of 8-D light-cone, in particular near the upper boundary of CD.

The counter part for the length squared of octonion in Minkowskian signature is light-one
proper time coordinate a2 = t2− r2 for M8

+. Replacing o which scaled dimensionless variable
o1 = o/(T/2) the gluing take place along a = T/2 hyperboloid.

One has algebraic holomorphy with respect to o but also anti-holomorphy is possible. What
could these two options correspond to? Could the space-time surfaces assignable to self and its
time-reversal relate by octonionic conjugation o → o relating two Fock vacuums annihilated by
fermionic annihilation resp. creation operators?

In [L24, L26] the possibility that the sequence of SSFRs or BSFRs could involve iteration of
the polynomial defining space-time surface - actually different polynomials were allowed for two
boundaries. There are 3 options: each SSFR would involve the replacement Q = P ◦ ..◦P → P ◦Q,
the replacement occurs only when new “special moments in the life of self” defined by the roots
of P as t = rn balls of cd, or the replacement can occur in BSFR when the metabolic resources
do not allow to continue the iteration (the increase of heff during iteration increases the needed
metabolic feed).

The iteration is compatible with the proposed picture. The assumption P (0) = 0 implies that
iterates of P contain also the roots of P as roots - they are like conserved genes. Also the 8-D
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light-cone boundary remains invariant under iteration. Even more general function decompositions
P → Q→ P are consistent with the proposed picture.

2.2.4 Brane-like solutions

One obtains also 6-D brane-like solutions to the equations.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone δM8
+ of M8

with tip at the origin of coordinates is an exception [L4, L5, L6]. At δM8
+ the octonionic

coordinate o is light-like and one can write o = re, where 8-D time coordinate and radial
coordinate are related by t = r and one has e = (1 + er)/

√
2 such that one as e2 = e.

Polynomial P (o) can be written at δM8
+ as P (o) = P (r)e and its roots correspond to 6-

spheres S6 represented as surfaces tM = t = rN , rM =
√
r2N − r2E ≤ rN , rE ≤ rN , where

the value of Minkowski time t = r = rN is a root of P (r) and rM denotes radial Minkowski
coordinate. The points with distance rM from origin of t = rN ball of M4 has as fiber
3-sphere with radius r =

√
r2N − r2E . At the boundary of S3 contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries rM = rN of balls belong to the
boundary of M4 light-cone. In this case the intersection would be that of 4-D and 3-D surface,
and empty in the generic case (it is however quite not clear whether topological notion of
“genericity” applies to octonionic polynomials with very special symmetry properties).

3. The 6-spheres tM = rN would be very special. At these 6-spheres the 4-D space-time surfaces
X4 as usual roots of P (o) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of rn.

The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their
2-D ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary
Feynman diagrams. Obviously this would make the definition of the generalized vertices
mathematically elegant and simple.

Note that this does not require that space-time surfaces X4 meet along 3-D surfaces at
S6. The interpretation of the times tn as moments of phase transition like phenomena is
suggestive. ZEO based theory of consciousness suggests interpretation as moments for state
function reductions analogous to weak measurements ad giving rise to the flow of experienced
time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as
initial data fixing the 4-D roots of polynomials. This would give precise content to strong
form of holography (SH), which is one of the central ideas of TGD and strengthens the
3-D holography coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of
CD define unique preferred extremals. The reduction to 2-D holography would be due to
preferred extremal property realizing the huge symplectic symmetries and making M8 −H
duality possible as also classical twistor lift.

I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X4 ∩ S6? This is not possible since time coordinate tM constant at the roots
and varies at string world sheets.

Note that the compexification of M8 (or equivalently octonionic E8) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(ε1, εi, .., ε8), epsiloni = ±1 signatures. Their physical interpretation - if any - remains open
at this moment.

5. The universal 6-D brane-like solutions S6
c have also lower-D counterparts. The condition

determining X2 states that the Cc-valued “real” or “imaginary” for the non-vanishing Qc-
valued “real” or “imaginary” for P vanishes. This condition allows universal brane-like
solution as a restriction of Oc to M4

c (that is CDc) and corresponds to the complexified
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time=constant hyperplanes defined by the roots t = rn of P defining “special moments in
the life of self” assignable to CD. The condition for reality in Rc sense in turn gives roots of
t = rn a hyper-surfaces in M2

c .

2.2.5 Explicit realization of M8 −H duality

M8 − H duality allows to map space-time surfaces in M8 to H so that one has two equivalent
descriptions for the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with
2-D singularities in H satisfying an infinite number of additional conditions stating vanishing
of Noether charges for super-symplectic algebra actings as isometries for the “world of classical
worlds” (WCW). Twistor lift allows variants of this duality. M8

H duality predicts that space-
time surfaces form a hierarchy induced by the hierarchy of extensions of rationals defining an
evolutionary hierarchy. This forms the basis for the number theoretical vision about TGD.

M8 −H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Associativity condition for tangent-/normal space is the first essential condition for the exis-
tence of M8 −H duality and means that tangent - or normal space is quaternionic.

2. The tangent space of space-time surface and thus space-time surface itself must contain a
preferred M2

c ⊂ M4
c or more generally, an integrable distribution of tangent spaces M2

c (x)
and similar distribution of their complements E2c(x). The string world sheet like entity
defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would correspond to
partonic 2-surface.

One can imagine two realizations for this condition.
Option I: Global option states that the distributions M2

c (x) and E2
c (x) define slicing of X4

c .
Option II: Only discrete set of 2-surfaces satisfying the conditions exist, they are mapped to

H, and strong form of holography (SH) applied in H allows to deduce space-time surfaces in H.
This would be the minimal option.

That the selection between these options is not trivial is suggested by following.

1. For massless extremals (MEs, topological light rays) parameterized by light-like vector vector
k defining M2 ⊂ M2 × E2 ⊂ M4 at each point and by space-like polarization vector ε
depending on single transversal coordinate of E2 [K3].

2. CP2 coordinates have an arbitrary dependence on both u = k ·m and w = ε ·m and can be
also multivalued functions of u and w. Single light-like vector k is enough to identify M2.
CP2 type extremals having metric and Kähler form of CP2 have light-like geodesic as M4

projection defining M2 and its complement E2 in the normal space.

3. String like objects X2×Y 2 ⊂M4×CP2 are minimal surfaces and X2 defines the distribution
of M2(x) ⊂M4. Y 2 ddefines the complement of this distribution.

Option I is realized in all 3 cases. It is not clear whether M2 can depend on position in
the first 2 cases and also CP2 point in the third case. It could be that only a discrete set of
these string world sheets assignable to wormhole contacts representing massless particles is
possible (Option II).

How these conditions would be realized?

1. The basic observation is that X2c can be fixed by posing to the non-vanishing Hc-valued
part of octonionic polynomial P condition that the Cc valued “real” or “imaginary” part in
Cc sense for P vanishes. M2

c would be the simplest solution but also more general complex
sub-manifolds X2

c ⊂M4
c are possible. This condition allows only a discrete set of 2-surfaces

as its solutions so that it works only for Option II.

These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
curves of analytic function f(z) = u + iv. One should have family of polynomials differing
by a constant term, which should be real so that v = 0 surfaces would form a discrete set.
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2. As found, there are also classes special global solutions for which the choice of M2
c is global

and does not depend on space-time point. The interpretation would be in terms of modes
of classical massless fields characterized by polarization and momentum. If the identification
of M2

c is correct, these surfaces are however unstable against perturbations generating dis-
crete string world sheets and orbits of partonic 2-surfaces having interpretation space-time
counterparts of quanta. That fields are detected via their quanta was the revolutionary ob-
servation that led to quantum theory. Could quantum measurement induce the instability
decomposing the field to quanta at the level of space-time topology?

3. One can generalize this condition so that it selects 1-D surface in X2
c . By assuming that

Rc-valued “real” or “imaginary” part of quaternionic part of P at this 2-surface vanishes.
one obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit or

distribution of the imaginary unit having interpretation as complexified string. Together
these kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin.
The outcome would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as
surfaces.

This option could be made possible by SH. SH states that preferred extremals are determined
by data at 2-D surfaces of X4. Even if the conditions defining X2

c have only a discrete set
of solutions, SH at the level of H could allow to deduce the preferred extremals from the
data provided by the images of these 2-surfaces under M8 − H duality. Associativity and
existence of M2(x) would be required only at the 2-D surfaces.

4. I have proposed that physical string world sheets and partonic 2-surfaces appear as singu-
larities and correspond to 2-D folds of space-time surfaces at which the dimension of the
quaternionic tangent space degenerates from 4 to 2 [L15] [K3]. This interpretation is consis-
tent with a book like structure with 2-pages. Also 1-D real and imaginary manifolds could
be interpreted as folds or equivalently books with 2 pages.

For the singular surfaces the dimension quaternionic tangent or normal space would reduce
from 4 to 2 and it is not possible to assign CP2 point to the tangent space. This does not
of course preclude the singular surfaces and they could be analogous to poles of analytic
function. Light-like orbits of partonic 2-surfaces would in turn correspond to cuts.

5. What could the normal space singularity mean at the level of H? Second fundamental form
defining vector basis in normal space is expected to vanish. This would be the case for
minimal surfaces.

(a) String world sheets with Minkowskian signature (in M4 actually) are expected to be
minimal surfaces. In this case T matters and string world sheets could be mapped to
H by M8 −H duality and SH would work for them.

(b) The light-like orbits of partonic 2-surfaces with Euclidian signature in H would serve
as analogs of cuts. N is expected to matter and partonic 2-surfaces should be minimal
surfaces. Their branching of partonic 2-surfaces is thus possible and would make possible
(note the analogy with the branching of soap films) for them to appear as 2-D vertices
in H.

The problem is to identify the pre-images of partonic 2-surfaces in M8. The light-
likeness of the orbits of partonic 2-surfaces (induced 4-metric changes its signature and
degenerates to 3-D) should be important. Could light-likeness in this sense define the
pre-images partonic orbits in M8?

Remark: It must be emphasized that SH makes possible M8−H correspondence assuming that
also associativity conditions hold true only at partonic 2-surfaces and string world sheets. Thus
one could give up the conjecture that the polynomial ansatz implies that tangent or normal spaces
are associative. Proving that this is the case for the tangent/normal spaces of these 2-surfaces
should be easier.
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2.2.6 Does M8 −H duality relate hadron physics at high and low energies?

During the writing of this article I realized that M8 − H duality has very nice interpretation in
terms of symmetries. For H = M4 × CP2 the isometries correspond to Poincare symmetries and
color SU(3) plus electroweak symmetries as holonomies of CP2. For octonionic M8 the subgroup
SU(3) ⊂ G2 is the sub-group of octonionic automorphisms leaving fixed octonionic imaginary unit
invariant - this is essential for M8 −H duality. SU(3) is also subgroup of SO(6) ≡ SU(4) acting
as rotation on M8 = M2 × E6. The subgroup of the holonomy group of SO(4) for E4 factor of
M8 = M4 ×E4 is SU(2)×U(1) and corresponds to electroweak symmetries. One can say that at
the level of M8 one has symmetry breaking from SO(6) to SU(3) and from SO(4) = SU(2)×SO(3)
to U(2).

This interpretation gives a justification for the earlier proposal that the descriptions provided
by the old-fashioned low energy hadron physics assuming SU(2)L × SU(2)R and acting acting as
covering group for isometries SO(4) of E4 and by high energy hadron physics relying on color
group SU(3) are dual to each other.

2.2.7 Skyrmions and M8 −H duality

I received a link (https://tinyurl.com/ycathr3u) to an article telling about research (https:
//tinyurl.com/yddwhr2o) carried out for skyrmions, which are very general condensed matter
quasiparticles. They were found to replicate like DNA and cells. I realized that I have not clarified
myself the possibility of skyrmions on TGD world and decided to clarify my thoughts.

1. What skyrmions are?

Consider first what skyrmions are.

1. Skyrmions are topological entities. One has some order parameter having values in some
compact space S. This parameter is defined in say 3-ball such that the parameter is constant
at the boundary meaning that one has effectively 3-sphere. If the 3rd homotopy group of
S characterizing topology equivalence classes of maps from 3-sphere to S is non-trivial, you
get soliton-llike entities, stable field configurations not deformable to trivial ones (constant
value). Skyrmions can be assigned to space S which is coset space SU(2)L×SU(2)R/SU(2)V ,
essentially S3 and are labelled by conserved integer-valued topological quantum number.

2. One can imagine variants of this. For instance, one can replace 3-ball with disk. SO(3) = S3

with 2-sphere S2. The example considered in the article corresponds to discretized situation
in which one has magnetic dipoles/spins at points of say discretized disk such that spins have
same direction about boundary circle. The distribution of directions of spin can give rise to
skyrmion-like entity. Second option is distribution of molecules which do not have symmetry
axis so that as rigid bodies the space of their orientations is discretized version of SO(3). The
field would be the orientation of a molecule of lattice and one has also now discrete analogs
of skyrmions.

3. More generally, skyrmions emerge naturally in old-fashioned hadron physics, where SU(2)L×
SU(2)R/SU(2)V involves left-handed, right-handed and vectorial subgroups of SO(4) =
SU(2)L × SU(2)R. The realization would be in terms of 4-component field (π, σ), where π
is charged pion with 3 components - axial vector - and σ which is scalar. The additional
constraint π · π + σ2 = constant defines 3-sphere so that one has field with values in S3.
There are models assigning this kind of skyrmion with nucleon, atomic nuclei, and also in
the bag model of hadrons bag can be thought of as a hole inside skyrmion. These models
seem to have something to do with reality so that a natural question is whether skyrmions
might appear in TGD.

2. Skyrmion number as winding number

In TGD framework one can regard space-time as 4-surface in either octonionic M8
c , c refers

here to complexification by an imaginary unit i commuting with octonions, or in M4 × CP2. For
the solution surfaces M8 has natural decomposition M8 = M2×E6 and E6 has SO(6) as isometry
group containing subgroup SU(3) having automorphisms of octonions as subgroup leaving M2

https://tinyurl.com/ycathr3u
https://tinyurl.com/yddwhr2o
https://tinyurl.com/yddwhr2o


2.2 New results about M8 −H duality 16

invariant. SO(6) = SU(4) contains SU(3) as subgroup, which has interpretation as isometries of
CP2 and counterpart of color gauge group. This supports M8−H duality, whose most recent form
is discussed in [L22].

The map S3 → S3 defining skyrmion could be taken as a phenomenological consequence ofM8−
H duality implying the old-fashioned description of hadrons involving broken SO(4) symmetry
(PCAC) and unbroken symmetry for diagonal group SO(3)V (CCV). The analog of (π, sigma)
field could correspond to a B-E condensate of pions (π, sigma).

The obvious question is whether the map S3 → S3 defining skyrmion could have a deeper
interpretation in TGD framework. I failed to find any elegant formulation. One could however
generalize and ask whether skyrmion like entities characterize by winding number are predicted by
basic TGD.

1. In the models of nucleon and nuclei the interpretation of conserved topological skyrmion
number is as baryon number. This number should correspond to the homotopy class of the
map in question, essentially winding number. For polynomials of complex number degree
corresponds to winding number. Could the degree n = heff/h0 of polynomial P having
interpretation as effective Planck constant and measure of complexity - kind of number
theoretic IQ - be identifiable as skyrmion number? Could it be interpreted as baryon number
too?

2. For leptons regarded as local 3 anti-quark composites in TGD based view about SUSY [L18]
the same interpretation would make sense. It seems however that the winding number must
have both signs. Degree is n is however non-negative.

Here complexification of M8 to M8
c is essential. One an allow both holomorphic and anti-

holomorphic continuations of real polynomials P (with rational coefficients) using complex-
ification defined by commutative imaginary unit i in M8

c so that one has polynomials P (z)
resp. P (z) in turn algebraically continued to complexified octonionic polynomials P (z, o)
resp. P (z, o).

Particles resp. antiparticles would correspond to the roots of octonionic polynomial P (z, o)
resp. P (z, o) meaning space-time geometrization of the particle-antiparticle dichotomy and
would be conjugates of each other. This could give a nice physical interpretation to the
somewhat mysterious complex roots of P .

3. More detailed formulation

To make this formulation more detailed on must ask how 4-D space-time surfaces correspond
to 8-D “roots” for the “imaginary” (“real” ) part of complexified octonionic polynomial as surfaces
in M8

c .

1. Equations state the simultaneous vanishing of the 4 components of complexified quaternion
valued polynomial having degree n and with coefficients depending on the components of
Oc, which are regarded as complex numbers x+ iy, where i commutes with octonionic units.
The coefficients of polynomials depend on complex coordinates associated with non-vanishing
“real” (“imaginary”) part of the Oc valued polynomial.

2. To get perspective, one can compare the situation with that in catastrophe theory in which
one considers roots for the gradient of potential function of behavior variables xi. Potential
function is polynomial having control variables as parameters. Now behavior variable corre-
spond “imaginary” (“real” ) part and control variables to “real” (“imaginary”) of octonionic
polynomial.

For a polynomial with real coefficients the solution divides to regions in which some roots are
real and some roots are complex. In the case of cusp catastrophe one has cusp region with
3-D region of the parameter defined by behavior variable x and 2 control parameters with 3
real roots, the region in which one has one real root. The boundaries for the projection of
3-sheeted cusp to the plane defined by control variables correspond to degeneration of two
complex roots to one real root.

In the recent case it is not clear whether one cannot require the M8
c coordinates for space-time

surface to be real but to be in M8 = M1 + iE7 .
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3. Allowing complex roots gives 8-D space-time surfaces. How to obtain real 4-D space-time
surfaces?

(a) One could project space-time surfaces to real M8 to obtain 4-D real space-time surfaces.
For M8 this would mean projection to M1 + iE7 and in time direction the real part of
root is accepted and is same for the root and its conjugate. For E7 this would mean
that imaginary part is accepted and means that conjugate roots correspond to different
space-time surfaces and the notion of baryon number is realized at space-time level.

(b) If one allows only real roots, the complex conjugation proposed to relate fermions and
anti-fermions would be lost.

4. One can select for 4 complex M8
c coordinates Xk of the surface and the remaining 4 coordi-

nates Y k can be formally solved as roots of n:th degree polynomial with dynamical coefficients
depending on Xk and the remaining Y k. This is expected to give rise to preferred extremals
with varying dimension of M4 and CP2 projections.

5. It seems that all roots must be complex.

(a) The holomorphy of the polynomials with respect to the complex M8
c coordinates implies

that the coefficients are complex in the generic point M8
c . If so, all 4 roots are in general

complex but do not appear as conjugate pairs. The näıve guess is that the maximal
number of solutions would be n4 for a given choice of M8 coordinates solved as roots.
An open question is whether one can select subset of roots and what happens at t = rn
surfaces: could different solutions be glued together at them.

(b) Just for completeness one can consider also the case that the dynamical coefficients are
real - this is true in the E8 sector and whether it has physical meaning is not clear.
In this case the roots come as real roots and pairs formed by complex root and its
conjugate. The solution surface can be divided into regions depending on the character
of 4 roots. The n roots consist of complex root pairs and real roots. The members or
complex root pairs are mapped to same point in E8.

4. Could skyrmions in TGD sense replicate?

What about the observation that condensed matter skyrmions replicate? Could this have analog
at fundamental level?

1. The assignment of conserved topological quantum number to the skyrmion is not consistent
with replication unless the skyrmion numbers of outgoing states sum up to that of the initial
state. If the system is open one can circumvent this objection. The replication would be like
replication of DNA in which nucleotides of new DNA strands are brought to the system to
form new strands.

2. It would be fascinating if all skyrmions would correspond to space-time surfaces at funda-
mental M8 level. If so, skyrmion property also in magnetic sense could be induced by from
a deeper geometric skyrmion property of the MB of the system. The openness of the system
would be essential to guarantee conservation of baryon number. Here the fact that leptons
and baryons have opposite baryon numbers helps in TGD framework. Note also ordinary
DNA replication could correspond to replication of MB and thus of skyrmion sequences.

2.3 About p-adic length scale hypothesis and dark matter hierarchy

It is good to introduce first some background related to p-adic length scale hypothesis discussed
in chapters of [K19] and dark matter hierarchy discussed in chapters [K14, K15], in particular in
chatper [?].
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2.3.1 General form of p-adic length scale hypothesis

The most general form of p-adic length scale hypothesis does not pose conditions on allowed p-adic
primes and emerges from p-adic mass calculations [K6, K16, K20]. It has two forms corresponding
to massive particles and massless particles.

1. For massive particles the preferred p-adic mass calculations based on p-adic thermodynamics
predicts the p-adic mass squared m2 to be proportional to p or its power- the real counterpart
of m2 is proportional to 1/p or its power. In the simplest case one has

m2 =
X

p

~
L0

,

where L0 is apart from numerical constant the length R of CP2 geodesic circle. X is a
numerical constant not far from unity. X ≥ 1 is small integer in good approximation. For
instance for electron one has x = 5.

By Uncertainty Principle the Compton length of particle is characterizing the size of 3-
surfaces assignable to particle are proportional to

√
p:

Lc(m) = ~
m =

√
1
XLp , Lp =

√
pL0 = .

Here Lp is p-adic length scale and corresponds to minimal mass for given p-adic prime. p-
Adic length scale would be would characterize the size of the 3-surface assignable to the
particle and would correspond to Compton length.

2. For massless particles mass vanishes and the above picture is not possible unless there is very
small mass coming from p-adic thermodynamics and determined by the size scale of CD - this
is quite possible. The preferred time/spatial scales p-adic energy- equivalently 3-momentum
are proportional to p-adic prime p or its power. The real energy is proportional to 1/p. At
the embedding space level the size of scale causal diamond (CD) [L17] would be proportional
to p: L = T = pL0, L0 = T0 for c = 1. The interpretation in terms of Uncertainty Principle
is possible.

There would be therefore two levels: space-time level and embedding space level . At the
space-time level the primary p-adic length scale would be proportional to

√
p whereas the

p-adic length scale at embedding space-time would correspond to secondary p-adic length
scale proportional to p. The secondary p-adic length scales would assign to elementary new
physics in macroscopic scales. For electron the size scale of CD would be about .1 seconds,
the time scale associated with the fundamental bio-rhythm of about 10 Hz.

3. A third piece in the picture is adelic physics [L8, L9] inspiring the hypothesis that effective
Planck constant heff given by heff/h0 = n, h = 6h0, labels the phases of ordinary matter
identified as dark matter. n would correspond to the dimension of extension of rationals.

The connection between preferred primes and the value of n = heff/h0 is interesting. One
proposal is that preferred primes p in p-adic length scale hypothesis determining the mass
scale of particle correspond to so called ramified primes, which characterize the extensions.
The p-adic variant of the polynomial defining space-time surfaces in M8 picture would have
vanishing discriminant in order O(p). Since discriminant is proportional to the product of
differences of different roots of the polynomial, two roots would be very near to each other
p-adically. This would be mathematical correlate for criticality in p-adic sense.

M8 −H duality [L16, L14] leads to the prediction that the roots rn of polynomial defining
the space-time region in M8 correspond to preferred time values t = tn =∝ rn- I have called
t = tn “special moments in the life of self”. Since the squares for the differences for the roots
are proportional to ramified primes, these time differences would code for ramified primes
assignable to the space-time surface. There would be several p-adic time scales involved and
they would be coded by tij = ri− rj , whose moduli squared are divided by so called ramified
primes defining excellent candidates for preferred p-adic primes. p-Adic physics would make
itself visible at the level of space-time surface in terms of “special moments in the life of self”.
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4. p-Adic length scales emerge naturally from M8 − H duality [L16, L14]. Ramified primes
would in M8 picture appear as factors of time differences associated with “special moments
in the life of self” associated with CD [L14]. One has |ti − tj | ∝

√
pij , pij ramified prime. It

is essential that square root of ramified prime appears here.

This suggests strongly that p-adic length scale hypothesis is realized at the level of space-
time surface and there are several p-adic length scales present coded to the time differences.
Knowing of the polynomial would give information about p-adic physics involved. If dark
scales correlate with p-adic length scales as proposed, the definition of dark scale should
assume the dependence of ramified primes quite generally rather than as a result of number
theoretic survival of fittest as one might also think.

The factors ti − tj are proportional - not only to the typically very large p-adic prime pmax
charactering the system - but also smaller primes or their powers. Could the scales in
question be of form lp =

√
X
√
pmaxL0 rather than p-adic length scales Lpram defined by

various ramified primes. Here X would be integer consisting of small ramified primes.

p-Adic mass calculations predict in an excellent approximation the mass of the particle is
given by m = (

√
X/
√
p)m0, X small integer and m0 = 1/L0. Compton length would be

given by Lc(p) =
√
p/
√
X)L0. The identification lp = Lc(p) would be attractive but is not

possible unless one has X = 1. In this case one would be considering p-adic length scale Lp.
the interpretation in terms of multi-p-adicity seems to be the realistic option.

2.3.2 About more detailed form of p-adic length scale hypothesis

More specific form of p-adic length scale hypothesis poses conditions on physically preferred p-adic
primes. There are several guesses for preferred primes. They could be primes near to integer
powers 2k, where k could be positive integer, which could satisfy additional conditions such as
being odd, prime or be associated with Mersenne prime or Gaussian Mersenne. One can consider
also powers of other small primes such as p = 2, 3, 5. p-Adic length scale hypothesis in is basic
form would generalize the notion of period doubling. For odd values of k one would indeed obtain
period doubling, tripling, etc... suggesting strongly chaos theoretic origin.

1. p-Adic length scale hypothesis in its basic form

Consider first p-adic length scale hypothesis in its basic form.

1. In its basic form states that primes p ' 2k are preferred p-adic primes and correspond by
p-adic mass calculations p-adic length scales Lp ≡ L(k) ∝ √p = 2k/2. Mersenne primes
and primes associated with Gaussian Mersennes as especially favored primes and charged
leptons (k ∈ {127, 113, 107}) and Higgs boson (k = 89) correspond to them. Also hadron
physics (k = 107) and nuclear physics (k = 113) correspond to these scales. One can assign
also to hadron physics Mersenne prime and the conjecture is that Mersennes and Gaussian
Mersennes define scaled variants of hadron physics and electroweak physics. In the length
scale between cell membrane thickness fo 10 nm and nuclear size about 2.5 µm there are as
many as 4 Gaussian Mersennes corresponding to k ∈ {151, 157, 163, 167}.
Mersenne primes correspond to prime values of k and I have proposed that k is prime for
fundamental p-adic length scales quite generally. There are also however also other p-adic
length scales - for instance, for quarks k need not be prime - and it has remained unclear
what criterion could select the preferred exponents k. One can consider also the option that
odd values of k defined fundamental p-adic length scales.

2. What makes p-adic length scale hypothesis powerful is that masses of say scaled up variant
of hadron physics can be estimated by simple scaling arguments. It is convenient to use
electron’s p-adic length scale and calculate other p-adic length scales by scaling L(k) =
2(k−127)/2L(127).

Here one must make clear that there has been a confusion in the definitions, which was originally
due to a calculational error.
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1. I identified the p-adic length scale L(151) mistakenly as L(151) = 2(k−127)/2Le(127) by using
instead of L(127) electron Compton length Le ' L(127/

√
5. The notation for these scales

would be therefore Le(k) identified as Le(k) = 2(k−127)/2Le(127) and I have tried to use it
systematically but failed to use the wrong notation in informal discussions.

2. This mistake might reflect highly non-trivial physics. It is scaled up variants of Le which
seem to appear in physics. For instance, Le(151) ' 10 nm corresponds to basic scale in
living matter. Why the biological important scales should correspond to scaled up Compton
lengths for electron? Could dark electrons with scaled up Compton scales equal to Le(k) be
important in these scales? And what about the real p-adic length scales relate to these scales
by a scaling factor

√
5 ' 2.23?

2. Possible modifications of the p-adic length scale hypothesis

One can consider also possible modifications of the p-adic length scale hypothesis. In an attempt
to understand the scales associated with INW structures in terms of p-adic length scale hypothesis it
occurred to me that the scales which do not correspond to Mersenne primes or Gaussian Mersennes
might be generated somehow from the these scales.

1. Geometric mean L =
√
L(k1)L(k2) would length scale which would correspond to Lp with

p ' 2(k1+k2)/2. This is of the required form only if k = k1 + k2 is even so that k1 and k2
are both even or odd. If one starts from Mersennes and Gaussian Mersennes the condition
is satisfied. The value of k = (k1 + k2)/2 can be also even.

Remark: The geometric mean (127 + 107)/2 = 117 of electronic and hadronic Mersennes
corresponding to mass 16 MeV rather near to the mass of so called X boson [L3] (https:
//tinyurl.com/ya3yuzeb).

2. One can also consider the formula L = (L(k1)L(k2)..L(kn))1/n but in this case the scale
would correspond to prime p ' 2k1+...kn)/n. Since (k1 + ..kn)/n is integer only if k1 + ...kn is
proportional to n.

What about the allowed values of fundamental integers k? It seems that one must allow all
odd integers.

1. If only prime values of k are allowed, one can obtain obtain for twin prime pair (k− 1, k+ 1)
even integer k as geometric mean

√
k if k is square. If prime k is not a member of this

kind of pair, it is not possible to get integers k − 1 and k + 1. If only prime values of k are
fundamental, one could assign to k = 89 characterizing Higgs boson weak bosons k = 90
possibly characterizing weak bosons. Therefore it seems that one must allow all odd integers
with the additional condition already explained.

2. Just for fun one can check whether k = 161 forced by the argument related to electroweak
scale and heff corresponds to a geometric mean of two Gaussian Mersennes. One has
k(k1, k2) = (k2 + k2)/2 giving the list k(151, 157) = 154), k(151, 163) = 157 Gaussian
Mersenne itself, k(151, 167) = 159, k(157, 163) = 160, k(157, 167) = 162, k(163, 167) = 165.
Unfortunately, k = 161 does not belong to this set. If one allows all odd values of k as
fundamental, the problem disappears.

One can also consider refinements of p-adic length scale hypothesis in its basic form.

1. One can consider also a generalization of p-adic length scale hypothesis to allow length scales
coming as powers of small primes. The small primes p = 2, 3, 5 assignable to Platonic solids
would be especially interesting. p = 2, 3, 5 and also Fermat primes and Mersenne primes are
maximally near to powers of two and their powers would define secondary and higher p-adic
length scales. In this sense the extension would not actually bring anything new.

There is evidence for the occurrence of long p-adic time scales coming as powers of 3 [?, ?]
(http://tinyurl.com/ycesc5mq) and [K21] (https://tinyurl.com/y8camqlt. Further-
more, prime 5 and Golden Mean are related closely to DNA helical structure. Portion of
DNA with L(151) contains 10 DNA codons and is the minimal length containing an integer
number of codons.

https://tinyurl.com/ya3yuzeb
https://tinyurl.com/ya3yuzeb
http://tinyurl.com/ycesc5mq
https://tinyurl.com/y8camqlt


2.3 About p-adic length scale hypothesis and dark matter hierarchy 21

2. The presence of length scales associated with 1 nm and 2 nm thick structures encourage to
consider the possibility of p-adic primes near integers 2k3l5m defining generators of multi-
plicative ideals of integers. They do not satisfy the maximal nearness criterion anymore but
would be near to integers representable as products of powers of primes maximally near to
powers of two.

What could be the interpretation of the integer k appearing in p ' 2k? Elementary particle
quantum numbers would be associated with wormhole contacts with size scale of CP2 whereas
elementary particles correspond to p-adic size scale about Compton length. What could determine
the size scale of wormhole contact? I have proposed that to p-adic length scale there is associated
a scale characterizing wormhole contact and depending logarithmically on it and corresponds to
Lk = (1/2)log(p)L0 = (k/2)log(2)L0. The generalization of this hypothesis to the case of p '
2k3l5m... be straightforward and be Lk,l,m = (1/2)(klog(2) + llog(3) +mlog(5) + ..).

2.3.3 Dark scales and scales of CDs and their relation to p-adic length scale hierarchy

There are two length scale hierarchies. p-Adic length scale hierarchy assignable to space-time
surfaces and the dark hierarchy assignable to CDs. One should find an identification of dark scales
and understand their relationship to p-adic length scales.

1. Identification of dark scales

The dimension n of the extension provides the roughest measure for its complexity via the
formula heff/h0 = n. The basic - rather ad hoc - assumption has been that n as dimension of
extension defines not only heff but also the size scale of CD via L = nL0.

This assumption need not be true generally and already the attempt to understand gravitational
constant [L23] as a prediction of TGD led to the proposal that gravitational Planck constant
hgr = ngrh0 = GMm/v0 [?] could be coded by the data relating to a normal subgroup of Galois
group appearing as a factor of n.

The most general option is that dark scale is coded by a data related to extension of its
sub-extension and this data involves ramified primes. Ramified primes depend on the polyno-
mial defining the extension and there is large number polynomials defining the same extension.
Therefore ramified ramifies code information also about polynomial and dynamics of space-time
surface.

First some observations.

1. For Galois extension the order n has a natural decomposition to a product of orders ni of its
normal subgroups serving also as dimensions of corresponding extensions: n =

∏
i ni. This

implies a decomposition of the group algebra of Galois group to a tensor product of state
spaces with dimensions ni [L26].

2. Could one actually identify several dark scales as the proposed identifications of gravitational,
electromagnetic, etc variants of heff suggest? The hierarchy of normal subgroups of Galois
group of rationals corresponds to sub-groups with orders given by N(i, 1) = nini−1...ni−1
of n define orders for the normal subgroups of Galois group. For extensions of k − 1:th
extension of rationals one has N(i, k) = nini−1...ni−k. The most general option is that these
normal subgroups provide only the data allowing to associate dark scales to each of them.
The spectrum of heff could correspond to the {Ni,k} or at least the set {Ni,1}.

3. The extensions with prime dimension n = p have no non-trivial normal subgroups and n = p
would hold for them. For these extensions the state space of group algebra is prime as Hilbert
space and does not decompose to tensor product so that it would represent fundamental
system. Could these extensions be of special interest physically? SSFRs would naturally
involve state function reduction cascades proceeding downwards along hierarchy of normal
subgroups and would represent cognitive measurements [L26].

The original guess was that dark scale LD = nLp, where n is the order n for the extensions
and p is a ramified prime for the extension. A generalized form would allow LD = N(i, 1)Lpk for
the sub-extension such that pk is ramified prime for the sub-extension.
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2. Can one identify the size scale of CD as dark scale?

It would be natural if the scale of CD would be determined by the extension of rationals. Or
more generally, the scales of CD and hierarchy of sub-CDs associated with the extension would
be determined by the inclusion hierarchy of extensions and thus correspond to the hierarchy of
normal sub-groups of Galois group.

The simplest option would be LCD = LD so that the size scales of sub-CD would correspond
dark scales for sub-extension given by LCD,i = N(i, 1)Lpk , pk ramified prime of sub-extension.

1. The differences |ri − rj | would correspond to differences for Minkowski time of CD. CD
need not contain all values of hyperplanes t = ri and the evolution by SSFR would gradually
bring in day-light all roots rn of the polynomial P defining space-time surface as “very special
moments in the life of self”. If the size scale of CD is so large that also the largest value of
|ri| is inside the upper or lower half of CD, the size scale of CD would correspond roughly to
the largest p-adic length scale.

CD contains sub-CDs and these could correspond to normal subgroups of Galois extension
as extension of extension of ....

2. One can ask what happens when all special moments t = rn have been experienced? Does
BSFR meaning death of conscious entity take place or is there some other option? In [L24]
I considered a proposal for how chaos could emerge via iterations of P during the sequence
of SSFRs.

One could argue that when CD has reached by SSFRs following unitary evolutions a size for
which all roots rn have become visible, the evolution could continues by the replacement of
P with P ◦ P , and so on. This would give rise to iteration and space-time analog for the
approach to chaos.

3. Eventually the evolution by SSFRs must stop. Biological arguments suggests that metabolic
limitations cause the death of self since the metabolic energy feed is not enough to preserve
the distribution of values of heff (energies increase with heff ∝ Nn, for N :th iteration and
heff is reduced spontaneously) [L27].

3 Fermionic variant of M 8 −H duality

The topics of this section is M8 −H duality for fermions. Consider first the bosonic counterpart
of M8 −H duality.

1. The octonionic polynomial giving rise to space-time surface X4 as its “root” is obtained
from ordinary real polynomial P with rational coefficients by algebraic continuation. The
conjecture is that the identification in terms of roots of polynomials of even real analytic
functions guarantees associativity and one can formulate this as rather convincing argument
[L4, L5, L6]. Space-time surface X4

c is identified as a 4-D root for a Hc-valued “imaginary”
or “real” part of Oc valued polynomial obtained as an Oc continuation of a real polynomial
P with rational coefficients, which can be chosen to be integers. These options correspond
to complexified-quaternionic tangent- or normal spaces. For P (x) = xn + .. ordinary roots
are algebraic integers. The real 4-D space-time surface is projection of this surface from M8

c

to M8. One could drop the subscripts ”c” but in the sequel they will be kept.

M4
c appears as a special solution for any polynomial P . M4

c seems to be like a universal
reference solution with which to compare other solutions.

One obtains also brane-like 6-surfaces as 6-spheres as universal solutions. They have M4

projection, which is a piece of hyper-surface for which Minkowski time as time coordinate of
CD corresponds to a root t = rn of P . For monic polynomials these time values are algebraic
integers and Galois group permutes them.

2. One cannot exclude rational functions or even real analytic functions in the sense that Taylor
coefficients are octonionically real (proportional to octonionic real unit). Number theoretical
vision - adelic physics [L8], suggests that polynomial coefficients are rational or perhaps in
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extensions of rationals. The real coefficients could in principle be replaced with complex
numbers a + ib, where i commutes with the octonionic units and defines complexifiation of
octonions. i appears also in the roots defining complex extensions of rationals.

The generalization of the relationship between reals, extensions of p-adic number fields, and
algebraic numbers in their intersection is suggestive. The “world of classical worlds” (WCW)
would contain the space-time surfaces defined by polynomials with general real coefficients.
Real WCW would be continuous space in real topology. The surfaces defined by rational
or perhaps even algebraic coefficients for given extension would represent the intersection of
real WCW with the p-adic variants of WCW labelled by the extension.

3. M8 − H duality requires additional condition realized as condition that also space-time
surface itself contains 2-surfaces having commutative (complex) tangent or normal space.
These surfaces can be 2-D also in metric sense that is light-like 3-D surfaces. The number of
these surfaces is finite in generic case and they do not define a slicing of X4 as was the first
expectation. Strong form of holography (SH) makes it possible to map these surfaces and
their tangent/normal spaces to 2-D surfaces M4× CP2 and to serve as boundary values for
the partial differential equations for variational principle defined by twistor lift. Space-time
surfaces in H would be minimal surface apart from singularities.

Concerning M8 −H duality for fermions, there are strong guidelines: also fermionic dynamics
should be algebraic and number theoretical.

1. Spinors should be octonionic. I have already earlier considered their possible physical inter-
pretation. [L1].

2. Dirac equation as linear partial differential equation should be replaced with a linear algebraic
equation for octonionic spinors which are complexified octonions. The momentum space
variant of the ordinary Dirac equation is an algebraic equation and the proposal is obvious:
PΨ = 0, where P is the octonionic continuation of the polynomial defining the space-time
surface and multiplication is in octonionic sense. The conjugation in Oc is induced by the
conjugation of the commuting imaginary unit i. The square of the Dirac operator is real if the
space-time surface corresponds to the projection Oc →M8 →M4 with real time coordinate
and imaginary spatial coordinates so that the metric defined by the octonionic norm is real
and has Minkowskian signature. Hence the notion of Minkowski metric reduces to octonionic
norm for Oc - a purely number theoretic notion.

The masslessness condition restricts the solutions to light-like 3-surfaces mklP
kP l = 0 in

Minkowskian sector analogous to mass shells in momentum space - just as in the case of
ordinary massless Dirac equation. P (o) rather than octonionic coordinate o would define
momentum. These mass shells should be mapped to light-like partonic orbits in H.

3. This picture leads to the earlier phenomenological picture about induced spinors in H.
Twistor Grassmann approach suggests the localization of the induced spinor fields at light-
like partonic orbits in H. If the induced spinor field allows a continuation from 3-D partonic
orbits to the interior of X4, it would serve as a counterpart of virtual particle in accordance
with quantum field theoretical picture.

3.1 M8 −H duality for space-time surfaces

It is good to explain M8−H duality for space-time surfaces before discussing it in fermionic sector.

3.1.1 Space-time as 4-surface in M8
c = Oc

One can regard real space-time surface X4 ⊂ M8 as a M8−-projection of X4
c ⊂ M8

c = Oc. M
4
c

is identified as complexified quaternions Hc [L16, L22]. The dynamics is purely algebraic and
therefore local an associativity is the basic dynamical principle.

1. The basic condition is associativity of X4 ⊂M8 in the sense that either the tangent space or
normal space is associative - that is quaternionic. This would be realized if X4

c as a root for
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the quaternion-valued “real” or “imaginary part” for the Oc algebraic continuation of real
analytic function P (x) in octonionic sense. Number theoretical universality requires that the
Taylor coefficients are rational numbers and that only polynomials are considered.

The 4-surfaces with associative normal space could correspond to elementary particle like
entities with Euclidian signature (CP2 type extremals) and those with associative tangent
space to their interaction regions with Minkowskian signature. These two kinds space-time
surfaces could meet along these 6-branes suggesting that interaction vertices are located at
these branes.

2. The conditions allow also exceptional solutions for any polynomial for which both “real” and
“imaginary” parts of the octonionic polynomial vanish. Brane-like solutions correspond to 6-
spheres S6 having t = rn 3-ball B3 of light-cone as M4 projection: here rn is a root of the real
polynomial with rational coefficients and can be also complex - one reason for complexification
by commuting imaginary unit i. For scattering amplitudes the topological vertices as 2-
surfaces would be located at the intersections of X4

c with 6-brane. Also Minkowski space M4

is a universal solution appearing for any polynomial and would provide a universal reference
space-time surface.

3. Polynomials with rational coefficients define EQs and these extensions form a hierarchy real-
ized at the level of physics as evolutionary hierarchy. Given extension induces extensions of
p-adic number fields and adeles and one obtains a hierarchy of adelic physics. The dimension
n of extension allows interpretation in terms of effective Planck constant heff = n×h0. The
phases of ordinary matter with effective Planck constant heff = nh0 behave like dark matter
and galactic dark matter could correspond to classical energy in TGD sense assignable to
cosmic strings thickened to magnetic flux tubes. It is not completely clear whether number
galactic dark matter must have heff > h. Dark energy in would correspond to the volume
part of the energy of the flux tubes.

There are good arguments in favor of the identification h = 6h0 [L10]. “Effective” means
that the actual value of Planck constant is h0 but in many-sheeted space-time n counts the
number of symmetry related space-time sheets defining X4 as a covering space locally. Each
sheet gives identical contribution to action and this implies that effective value of Planck
constant is nh0.

The ramified primes of extension in turn are identified as preferrred p-adic primes. The
moduli for the time differences |tr− ts| have identification as p-adic time scales assignable to
ramified primes [L22]. For ramified primes the p-adic variants of polynomials have degenerate
zeros in O(p) = 0 approximation having interpretation in terms of quantum criticality central
in TGD inspired biology.

4. During the preparation of this article I made a trivial but overall important observation.
Standard Minkowski signature emerges as a prediction if conjugation in Oc corresponds to
the conjugation with respect to commuting imaginary unit i rather than octonionic imaginary
units as though earlier. If the space-time surface corresponds to the projection Oc →M8 →
M4 with real time coordinate and imaginary spatial coordinates the metric defined by the
octonionic norm is real and has Minkowskian signature. Hence the notion of Minkowski
metric reduces to octonionic norm for Oc - a purely number theoretic notion.

3.1.2 Realization of M8 −H duality

M8 − H duality allows to X4 ⊂ M8 to X4 ⊂ H so that one has two equivalent descriptions for
the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with 2-D preferred 2-
surfaces defining holography making possibleM8−H duality and possibly appearing as singularities
in H. The dynamics of minimal surfaces, which are also extremals of Kähler action, reduces
for known extremals to purely algebraic conditions analogous to holomorphy conditions in string
models and thus involving only gradients of coordinates. This condition should hold generally and
should induce the required huge reduction of degrees of freedom proposed to be realized also in
terms of the vanishing of super-symplectic Noether charges already mentioned [K23].
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Twistor lift allows several variants of this basic duality [L19]. M8
H duality predicts that space-

time surfaces form a hierarchy induced by the hierarchy of EQs defining an evolutionary hierarchy.
This forms the basics for the number theoretical vision about TGD.

As already noticed, X4 ⊂M8 would satisfy an infinite number of additional conditions stating
vanishing of Noether charges for a sub-algebra SSAn ⊂ SSA of super-symplectic algebra SSA
actings as isometries of WCW.

M8 −H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions [L16].

1. Associativity condition for tangent-/normal spaces is the first essential condition for the exis-
tence of M8−H duality and means that tangent - or normal space is associative/quaternionic.

2. Each tangent space of X4 at x must contain a preferred M2
c (x) ⊂ M4

c such that M2
c (x)

define an integrable distribution and therefore complexified string world sheet in M4
c . This

gives similar distribution for their orthogonal complements E2c(x). The string world sheet
like entity defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would
correspond to partonic 2-surface. This condition generalizes for X4 with quaternionic normal
space. A possible interpretation is as a space-time correlate for the selection of quantization
axes for energy (rest system) and spin.

One can imagine two realizations for the additional condition.

Option I: Global option states that the distributions M2
c (x) and E2

c (x) define a slicing of X4
c .

Option II: Only a discrete set of 2-surfaces satisfying the conditions exist, they are mapped
to H, and strong form of holography (SH) applied in H allows to deduce X4 ⊂ H. This would be
the minimal option.

It seems that only Option II can be realized.

1. The basic observation is that X2
c can be fixed by posing to the non-vanishing Hc-valued part

of octonionic polynomial P condition that the Cc-valued “real” or “imaginary” part in Cc
sense for P vanishes. M2

c would be the simplest solution but also more general complex
sub-manifolds X2

c ⊂M4
c are possible. This condition allows only a discrete set of 2-surfaces

as its solutions so that it works only for Option II.

These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
curves of analytic function f(z) = u + iv. One should have family of polynomials differing
by a constant term, which should be real so that v = 0 surfaces would form a discrete set.

2. SH makes possible M8 −H duality assuming that associativity conditions hold true only at
2-surfaces including partonic 2-surfaces or string world sheets or perhaps both. Thus one can
give up the conjecture that the polynomial ansatz implies the additional condition globally.

SH indeed states that PEs are determined by data at 2-D surfaces of X4. Even if the
conditions defining X2

c have only a discrete set of solutions, SH at the level of H could allow
to deduce the PEs from the data provided by the images of these 2-surfaces under M8 −H
duality. The existence of M2(x) would be required only at the 2-D surfaces.

3. There is however a delicacy involved: X2 might be 2-D only metrically but not topologically!
The 3-D light-like surfaces X3

L indeed have metric dimension D = 2 since the induced 4-
metric degenerates to 2-D metric at them. Therefore their pre-images in M8 would be
natural candidates for the singularities at which the dimension of the quaternionic tangent
or normal space reduces to D = 2 [L15] [K3]. If this happens, SH would not be quite so strong
as expected. The study of fermionic variant of M8 −H-duality supports this conclusion.

One can generalize the condition selecting X2
c so that it selects 1-D surface inside X2

c . By
assuming that Rc-valued “real” or “imaginary” part of complex part of P sense at this 2-surface
vanishes. One obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit

or distribution of the imaginary unit having interpretation as a complexified string. Together these
kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin. The outcome
would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as surfaces.
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Figure 1: M8 −H duality.

3.2 What about M8 −H duality in the fermionic sector?

During the preparation of this article I become aware of the fact that the realization M8−H duality
in the fermionic sector has remained poorly understood. This led to a considerable integration of
the ideas about M8 − H duality also in the bosonic sector and the existing phenomenological
picture follows now from M8 −H duality. There are powerful mathematical guidelines available.

3.2.1 Octonionic spinors

By supersymmetry, octonionicity should have also fermionic counterpart.

1. The interpretation of M8
c as complexified octonions suggests that one should use complexified

octonionic spinors in M8
c . This is also suggested by SO(1,7) triality unique for dimension

d = 8 and stating that the dimensions of vector representation, spinor representation and
its conjugate are same and equal to D = 8. I have already earlier considered the possibility
to interpret M8 spinors as octonionic [L1]. Both octonionic gamma matrices and spinors
have interpretation as octonions and gamma matrices satisfy the usual anti-commutation
rules. The product for gamma matrices and gamma matrices and spinors is replaced with
non-associative octonionic product.

2. Octonionic spinors allow only one M8-chirality, which conforms with the assumption of TGD
inspired SUSY that only quarks are fundamental fermions and leptons are their local com-
posites [L18].
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3. The decomposition of X2 ⊂ X4 ⊂M8 corresponding to R ⊂ C ⊂ Q ⊂ O should have analog
for the Oc spinors as a tensor product decomposition. The special feature of dimension D = 8
is that the dimensions of spinor spaces associated with these factors are indeed 1, 2, 4, and
8 and correspond to dimensions for the surfaces!

One can define for octonionic spinors associative/co-associative sub-spaces as quaternionic/co-
quaternionic spinors by posing chirality conditions. For X4 ⊂ M8

c one could define the
analogs of projection operators P± = (1 ± γ5)/2 as projection operators to either factor of
the spinor space as tensor product of spinor space associated with the tangent and normal
spaces of X4: the analog of γ5 would correspond to tangent or normal space depending on
whether tangent or normal space is associative. For the spinors with definite chirality there
would be no entanglement between the tensor factors. The condition would generalize the
chirality condition for massless M4 spinors to a condition holding for the local M4 appearing
as tangent/normal space of X4.

4. The chirality condition makes sense also for X2 ⊂ X4 identified as complex/co-complex
surface of X4. Now γ5 is replaced with γ3 and states that the spinor has well-defined spin
in the direction of axis defined by the decomposition of X2 tangent space to M1 × E1 with
M1 defining real octonion axis and selecting rest frame. Interpretation in terms of quantum
measurement theory is suggestive.

What about tangent space quantum numbers in M8 picture. In H-picture they correspond to
spin and electroweak quantum numbers. In M8 picture the geometric tangent space group for a
rest system is product SU(2) × SU(2) with possible modifications due to octonionicity reducing
tangent space group to those respecting octonionic automorphisms.

What about the sigma matrices for the octonionic gamma matrices? The surprise is that
the commutators of M4 sigma matries and those of E4 sigma matrices close to the sama SO(3)
algebra allowing interpretation as representation for quaternionic automorphisms. Lorentz boosts
are represented trivially, which conforms with the fact that octonion structure fixes unique rest
system. Analogous result holds in E4 degrees of freedom. Besides this one has unit matrix
assignable to the generalize spinor structure of CP2 so that also electroweak U(1) factor is obtained.

One can understand this result by noticing that octonionic spinors correspond to 2 copies of a
tensor products of the spinor doublets associated with spin and weak isospin. One has 2⊗2 = 3⊕1
so that one must have 1⊕3⊕1⊕3. The octonionic spinors indeed decompose like 1+1+3+3 under
SU(3) representing automophisms of the octonions. SO(3) could be interpreted as SO(3) ⊂ SU(3).
SU(3) would be represented as tangent space rotations.

3.2.2 Dirac equation as partial differential equation must be replaced by an algebraic
equation

Algebraization of dynamics should be also supersymmetric. The modified Dirac equation in H is
linear partial differential equation and should correspond to a linear algebraic equation in M8.

1. The key observation is that for the ordinary Dirac equation the momentum space variant of
Dirac equation for momentum eigenstates is algebraic! Could the interpretation for M8−H
duality as an analog of momentum-position duality of wave mechanics considered already
earlier make sense! This could also have something to do with the dual descriptions of
twistorial scattering amplitudes in terms of either twistor and momentum twistors. Already
the earlier work excludes the interpretation of the octonionic coordinate o as 8-momentum.
Rather, P (o) has this interpretation and o corrresponds to embedding space coordinate.

2. The first guess for the counterpart of the modified Dirac equation at the level of X4 ⊂ M8

is PΨ = 0, where Ψ is octonionic spinor and the octonionic polynomial P defining the
space-time surface can be seen as a generalization of momentum space Dirac operator with
octonion units representing gamma matrices. If associativity/co-associativity holds true, the
equation becomes quaternionic/co-quaternionic and reduces to the 4-D analog of massless
Dirac equation and of modified Dirac equation in H. Associativity hols true if also Ψ satisfies
associativity/co-associativity condition as proposed above.
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3. What about the square of the Dirac operator? There are 3 conjugations involved: quater-
nionic conjugation assumed in the earlier work, conjugation with respect to i, and their
combination. The analog of octonionic norm squared defined as the product oco

∗
c with con-

jugation with respect to i only, gives Minkowskian metric mklo
kol as its real part. The

imaginary part of the norm squared is vanishing for the projection Oc →M8 →M4 so that
time coordinate is real and spatial coordinates imaginary. Therefore Dirac equation allows
solutions only for the M4 projection X4 and M4 (M8) signature of the metric can be said
to be an outcome of quaternionicity (octonionicity) alone in accordance with the duality
between metric and algebraic pictures.

Both P †P and PP should annihilate Ψ. P †PΨ = 0 gives mklP
kP

l
= 0 as the analog

of vanishing mass squared in M4 signature in both associative and co-associative cases.
PPΨ = 0 reduces to PΨ = 0 by masslessness condition. One could perhaps interpret the
projection X4

c →M8 →M4 in terms of Uncertainty Principle.

There is a U(1) symmetry involved: instead of the plane M8 one can choose any plane
obtained by a rotation exp(iφ) from it. Could it realize quark number conservation in M8

picture?

For P = o having only o = 0 as root Po = 0 reduces to o†o = 0 and o takes the role of
momentum, which is however vanishing. 6-D brane like solutions S6 having t = rn balls
B3 ⊂ CD4 as M4 projections one has P = 0 so that the Dirac equation trivializes and does
not pose conditions on Ψ. o would have interpretation as space-time coordinates and P (o)
as position dependent momentum components P k.

The variation of P at mass shell of M8
c (to be precise) could be interpreted in terms of the

width of the wave packet representing particle. Since the light-like curve at partonic 2-surface
for fermion at X3

L is not a geodesic, mass squared in M4 sense is not vanishing. Could one
understand mass squared and the decay width of the particle geometrically? Note that mass
squared is predicted also by p-adic thermodynamics [K16].

4. The masslessness condition restricts the spinors at 3-D light-cone boundary in P (M8). M8−
H duality [L16] suggests that this boundary is mapped to X3

L ⊂ H defining the light-like
orbit of the partonic 2-surface in H. The identification of the images of PkP

k = 0 surfaces
as X3

L gives a very powerful constraint on SH and M8 −H duality.

5. Also at 2-surfaces X2 ⊂ X4 an the variant Dirac equation would hold true and should
commute with the corresponding chirality condition. Now D†DΨ = 0 gives 2-D variant
of masslessness condition with 2-momentum components represented by those of P . 2-D
masslessness locates the spinor to a 1-D curve X1

L. Its H-image would naturally contain the
boundary of the string word sheet at X3

L assumed to carry fermion quantum numbers and
also the boundary of string world sheet at the light-like boundary of CD4. The interior of
string world sheet in H would not carry induced spinor field.

6. The general solution for both 4-D and 2-D cases can be written as Ψ = PΨ0, Ψ0 a constant
spinor - this in a complete analogy with the solution of modified Dirac equation in H. P
depends on position: the WKB approximation using plane waves with position dependent
momentum seems to be nearer to reality than one might expect.

3.2.3 The phenomenological picture at H-level follows from the M8-picture

Remarkably, the partly phenomenological picture developed at the level of H is reproduced at
the level of M8. Whether the induced spinor fields in the interior of X4 are present or not, has
been long standing question since they do not seem to have any role in the physical picture. The
proposed picture answers this question.

Consider now the explicit realization of M8 −H-duality for fermions.

1. SH and the expected analogy with the bosonic variant of M8 − H duality lead to the first
guess. The spinor modes in X4 ⊂ M8 restricted to X2 can be mapped by M8 −H-duality
to those at their images X2 ⊂ H, and define boundary conditions allowing to deduce the
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solution of the modified Dirac equation at X4 ⊂ H. X2 would correspond to string world
sheets having boundaries X1

L at X3
L.

The guess is not quite correct. Algebraic Dirac equation requires that the solutions are
restricted to the 3-D and 1-D mass shells PkP

k = 0 in M8. This should remain true also in
H and X3

L and their 1-D intersections X1
L with string world sheets remain. Fermions would

live at boundaries. This is just the picture proposed for the TGD counterparts of the twistor
amplitudes and corresponds to that used in twistor Grassmann approach!

For 2-D case constant octonionic spinors Ψ0 and gamma matrix algebra are equivalent with
the ordinary Weyl spinors and gamma matrix algebra and can be mapped as such to H. This
gives one additional reason for why SH must be involved.

2. At the level of H the first guess is that the modified Dirac equation DΨ = 0 is true for
D based on the modified gamma matrices associated with both volume action and Kähler
action. This would select preferred solutions of modified Dirac equation and conform with
the vanishing of super-symplectic Noether charges for SSAn for the spinor modes. The guess
is not quite correct. The restriction of the induced spinors to X3

L requires that Chern-Simons
action at X3

L defines the modified Drac action.

3. The question has been whether the 2-D modified Dirac action emerges as a singular part of 4-
D modified Dirac action assignable to singular 2-surface or can one assign an independent 2-D
Dirac action assignable to 2-surfaces selected by some other criterion. For singular surfaces
M8−H duality fails since tangent space would reduce to 2-D space so that only their images
can appear in SH at the level of H.

This supports the view that singular surfaces are actually 3-D mass shells M8 mapped to X3
L

for which 4-D tangent space is 2-D by the vanishing of
√
g4 and light-likeness. String world

sheets would correspond to non-singular X2 ⊂ M8 mapped to H and defining data for SH
and their boundaries X1

L ⊂ X3
L and X1

L ⊂ CD4 would define fermionic variant of SH.

What about the modified Dirac operator D in H?

1. For X3
L modified Dirac equation DΨ = 0 based on 4-D action S containing volume and

Kähler term is problematic since the induced metric fails to have inverse at X3
L. The only

possible action is Chern-Simons action SCS used in topological quantum field theories and
now defined as sum of C-S terms for Kähler actions in M4 and CP2 degrees of freedom. The
presence of M4 part of Kähler form of M8 is forced by the twistor lift, and would give rise
to small CP breaking effects explaining matter antimatter asymmetry [L18]. SC−S could
emerge as a limit of 4-D action.

The modified Dirac operator DC−S uses modified gamma matrices identified as contractions
ΓαCS = Tαkγk, where Tαk = ∂LCS/∂(∂αh

k) are canonical momentum currents for SC−S
defined by a standard formula.

2. CP2 part would give conserved Noether currents for color in and M4 part Poincare quantum
numbers: the apparently small CP breaking term would give masses for quarks and leptons!
The bosonic Noether current JB,A for Killing vector jkA would be proportional to JαB,A =

Tαk jAk and given by JB,A = εαβγ [JβγAk +AβJγk]jkA.

Fermionic Noether current would be JF,A = ΨJαΨ 3-D Riemann spaces allow coordinates in
which the metric tensor is a direct sum of 1-D and 2-D contributions and are analogous to
expectation values of bosonic Noether currents. One can also identify also finite number of
Noether super currents by replacing Ψ or Ψ by its modes.

3. In the case of X3
L the 1-D part light-like part would vanish. If also induced Kähler form

is non-vanishing only in 2-D degrees of freedom, the Noether charge densities J t reduce to
J t = JAkj

k
A, J = εαβγJβγ defining magnetic flux. Modified Dirac operator would reduce to

D = JAkγ
kDt and 3-D solutions would be covariantly constant spinors along the light-like

geodesics parameterized by the points 2-D cross section. One could say that the number of
solutions is finite and corresponds to covariantly constant modes continued from X1

L to X3
L.

This picture is just what twistor Grassmannian approach led to [L12].
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3.2.4 A comment inspired by the ZEO based quantum measurement theory

I cannot resist the temptation to make a comment relating to quantum measurement theory in-
spired by zero energy ontology (ZEO) extending to a theory of consciousness [L17, L26, L27].

I have proposed [L22, L24] that the time evolution by “big” state function reductions (BSFRs)
could be induced by iteration of real polynomial P - at least in some special cases. The foots of the
real polynomial P would define a fractal at the limit of larger number of iterations. The roots of
n-fold iterate ◦nP would contain the inverse images under ◦−n+1P of roots of P and for P (0) = 0
the inverse image ◦nP would consist of inverse images under ◦−kP , k = 0, ...., n− 1, of roots of P .

Also the mass shells for ◦nP would be unions of inverses images under ◦−kP , k = 0, , ...., n− 1,
of roots of P . This gives rather concrete view about evolution of M4 projections of the partonic
orbits. A rough approximate expression for the largest root of real P approximated as P (x) '
anx

n + an− 1ixn−1 for large x is xmax ∼ an/an−1. For ◦nP one obtains the same estimate. This
suggests that the size scales of the partonic orbits are same for the iterates. The mass shells would
not differ dramatically: could they have an interpretation in terms of mass splitting?

The evolution by iteration would add new partonic orbits and preserve the existing ones: this
brings in mind conservation of genes in biological evolution. This is true also for a more general
evolution allowing general functional decomposition Q→ Q ◦ P to occur in BSFR.

3.2.5 What next in TGD?

The construction of scattering amplitudes has been the dream impossible that has driven me for
decades. Maybe the understanding of fermionic M8 − H duality provides the needed additional
conceptual tools. The key observation is utterly trivial but far reaching: there are 3 possible
conjugations for octonions corresponding to the conjugation of commutative imaginary unit or
of octonionic imaginary units or both of them. 1st norm gives a real valued norm squared in
Minkowski signature natural at M8 level! Second one gives a complex valued norm squared in
Euclidian signature. 1st and 2nd norms are equivalent for octonions light-like with respect to the
first norm. The 3rd conjugation gives a real-valued Euclidian norm natural at the level of Hilbert
space.

1. M8 picture looks simple. Space-time surfaces in M8 can be constructed from real polynomials
with real (rational) coefficients, actually knowledge of their roots is enough. Discrete data -
roots of the polynomial!- determine space-time surface as associative or co-associative region!
Besides this one must pose additional condition selecting 2-D string world sheets and 3-
D light-like surfaces as orbits of partonic 2-surfaces. These would define strong form of
holography (SH) allowing to map space-time surfaces in M8 to M4 × CP2.

2. Could SH generalize to the level of scattering amplitudes expressible in terms of n-point
functions of CFT?! Could the n points correspond to the roots of the polynomial defining
space-time region!

Algebraic continuation to quaternion valued scattering amplitudes analogous to that giving
space-time sheets from the data coded SH should be the key idea. Their moduli squared are
real - this led to the emergence of Minkowski metric for complexified octonions/quaternions)
would give the real scattering rates: this is enough! This would mean a number theoretic
generalization of quantum theory.

3. One can start from complex numbers and string world sheets/partonic 2-surfaces. Confor-
mal field theories (CFTs) in 2-D play fundamental role in the construction of scattering
string theories and in modelling 2-D statistical systems. In TGD 2-D surfaces (2-D at least
metrically) code for information about space-time surface by strong holography (SH) .

Are CFTs at partonic 2-surfaces and string world sheets the basic building bricks? Could
2-D conformal invariance dictate the data needed to construct the scattering amplitudes for
given space-time region defined by causal diamond (CD) taking the role of sphere S2 in
CFTs. Could the generalization for metrically 2-D light-like 3-surfaces be needed at the level
of ”world of classical worlds” (WCW) when states are superpositions of space-time surfaces,
preferred extremals?
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The challenge is to develop a concrete number theoretic hierarchy for scattering amplitudes:
R→ C → H → O - actually their complexifications.

1. In the case of fermions one can start from 1-D data at light-like boundaries LB of string
world sheets at light-like orbits of partonic 2-surfaces. Fermionic propagators assignable
to LB would be coded by 2-D Minkowskian QFT in manner analogous to that in twistor
Grassmann approach. n-point vertices would be expressible in terms of Euclidian n-point
functions for partonic 2-surfaces: the latter element would be new as compared to QFTs
since point-like vertex is replaced with partonic 2-surface.

2. The fusion (product?) of these Minkowskian and Euclidian CFT entities corresponding to
different realization of complex numbers as sub-field of quaternions would give rise to 4-D
quaternionic valued scattering amplitudes for given space-time sheet. Most importantly:
there moduli squared are real for both norms.

It is not quite clear whether one must use the 1st Minkowskian norm requiring “time-like”
scattering amplitudes to achieve non-negative probabilities or use the 3rd norm to get the
ordinary positive-definite Hilbert space norm. A generalization of quantum theory (CFT)
from complex numbers to quaternions (quaternionic ”CFT”) would be in question.

3. What about several space-time sheets? Could one allow fusion of different quaternionic
scattering amplitudes corresponding to different quaternionic sub-spaces of complexified oc-
tonions to get octonion-valued non-associative scattering amplitudes. Again scattering rates
would be real. This would be a further generalization of quantum theory.

There is also the challenge to relate M8- and H-pictures at the level of WCW. The formulation
of physics in terms of WCW geometry [K23, ?] leads to the hypothesis that WCW Kähler geometry
is determined by Kähler function identified as the 4-D action resulting by dimensional reduction
of 6-D surfaces in the product of twistor spaces of M4 and CP2 to twistor bundles having S2 as
fiber and space-time surface X4 ⊂ H as base. The 6-D Kähler action reduces to the sum of 4-D
Kähler action and volume term having interpretation in terms of cosmological constant.

The question is whether the Kähler function - an essentially geometric notion - can have a
counterpart at the level of M8.

1. SH suggests that the Kähler function identified in the proposed manner can be expressed
by using 2-D data or at least metrically 2-D data (light-like partonic orbits and light-like
boundaries of CD). Note that each WCW would correspond to a particular CD.

2. Since 2-D conformal symmetry is involved, one expects also modular invariance meaning that
WCW Kähler function is modular invariant, so that they have the same value for X4 ⊂ H
for which partonic 2-surfaces have induced metric in the same conformal equivalence class.

3. Also the analogs of Kac-Moody type symmetries would be realized as symmetries of Kähler
function. The algebra of super-symplectic symmetries of the light-cone boundary can be
regarded as an analog of Kac-Moody algebra. Light-cone boundary has topology S2 × R+

where R+ corresponds to radial light-like ray parameterized by radial light-like coordinate r.
Super symplectic transformations of S2 × CP2 depend on the light-like radial coordinate r,
which is analogous to the complex coordinate z for he Kac-Moody algebras.

The infinitesimal super-symplectic transformations form algebra SSA with generators propor-
tional to powers rn . The Kac-Moody invariance for physical states generalizes to a hierarchy
of similar invariances. There is infinite fractal hierarchy of sub-algebras SSAn ⊂ SSA with
conformal weights coming as n-multiples of those for SSA. For physical states SSAn and
[SSAn, SSA] would act as gauge symmetries. They would leave invariant also Kähler func-
tion in the sector WCWn defined by n. This would define a hierarchy of sub- WCWs of the
WCW assignable to given CD.

The sector WCWn could correspond to extensions of rationals with dimension n, and one
would have inclusion hierarchies consisting of sequences of ni with ni dividing ni+1. These
inclusion hierarchies would naturally correspond to those for hyper-finite factors of type
II1 [K28].
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4 A vision about the role of HFFs in TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must
have a profound role in TGD. Whether also HFFS of type III1 appearing also in relativistic
quantum field theories emerge when WCW spinors are replaced with spinor fields is not
completely clear. I have proposed several ideas about the role of hyper-finite factors in TGD
framework. In particular, Connes tensor product is an excellent candidate for defining the
notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by zero energy on-
tology and the recent advances in the understanding of M-matrix using the notion of bosonic
emergence. The conclusion is that the notion of state as it appears in the theory of factors
is not enough for the purposes of quantum TGD. The reason is that state in this sense is
essentially the counterpart of thermodynamical state. The construction of M-matrix might
be understood in the framework of factors if one replaces state with its “complex square
root” natural if quantum theory is regarded as a “complex square root” of thermodynamics.
It is also found that the idea that Connes tensor product could fix M-matrix is too optimistic
but an elegant formulation in terms of partial trace for the notion of M-matrix modulo mea-
surement resolution exists and Connes tensor product allows interpretation as entanglement
between sub-spaces consisting of states not distinguishable in the measurement resolution
used. The partial trace also gives rise to non-pure states naturally.

The newest element in the vision is the proposal that quantum criticality of TGD Universe
is realized as hierarchies of inclusions of super-conformal algebras with conformal weights
coming as multiples of integer n, where n varies. If n1 divides n2 then various super-conformal
algebras Cn2

are contained in Cn1
. This would define naturally the inclusion.

4.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more
mature than or at least complementary to the summary that I could afford when I started the
work with factors for more than half decade ago. I of course admit that this just a humble
attempt of a physicist to express physical vision in terms of only superficially understood
mathematical notions.

4.1.1 Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert
space H bounded in the norm topology with norm defined by the supremum for the length
of the image of a point of unit sphere H. This algebra has a lot of common with complex
numbers in that the counterparts of complex conjugation, order structure and metric struc-
ture determined by the algebraic structure exist. This means the existence involution -that
is *- algebra property. The order structure determined by algebraic structure means follow-
ing: A ≥ 0 defined as the condition (Aξ, ξ) ≥ 0 is equivalent with A = B∗B. The algebra
has also metric structure ||AB|| ≤ ||A||||B| (Banach algebra property) determined by the
algebraic structure. The algebra is also C∗ algebra: ||A∗A|| = ||A||2 meaning that the norm
is algebraically like that for complex numbers.

A von Neumann algebra M [A3] is defined as a weakly closed non-degenerate *-subalgebra
of B(H) and has therefore all the above mentioned properties. From the point of view of
physicist it is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

(a) Let M be subalgebra of B(H) and denote by M′ its commutant (H) commuting with
it and allowing to express B(H) as B(H) =M∨M′.

(b) A factor is defined as a von Neumann algebra satisfying M′′ =MM is called factor.
The equality of double commutant with the original algebra is thus the defining condition
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so that also the commutant is a factor. An equivalent definition for factor is as the
condition that the intersection of the algebra and its commutant reduces to a complex
line spanned by a unit operator. The condition that the only operator commuting with
all operators of the factor is unit operator corresponds to irreducibility in representation
theory.

(c) Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H
and separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if
and only if it is separating for its commutant. In so called standard representation Ω is
both cyclic and separating.

(d) For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union
is dense in the factor exists. This roughly means that one can approximate the algebra
in arbitrary accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the under-
lying physical motivations. The motivating question is what the decomposition of a physical
system to non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product
realizes this decomposition.

(a) Tensor product H = H1 ⊗ H2 is the decomposition according to the standard quan-
tum measurement theory and means the decomposition of operators in B(H) to tensor
products of mutually commuting operators inM = B(H1) andM′ = B(H2). The infor-
mation aboutM can be coded in terms of projection operators. In this case projection
operators projecting to a complex ray of Hilbert space exist and arbitrary compact op-
erator can be expressed as a sum of these projectors. For factors of type I minimal
projectors exist. Factors of type In correspond to sub-algebras of B(H) associated with
infinite-dimensional Hilbert space and I∞ to B(H) itself. These factors appear in the
standard quantum measurement theory where state function reduction can lead to a
ray of Hilbert space.

(b) For factors of type II no minimal projectors exists whereas finite projectors exist. For
factors of type II1 all projectors have trace not larger than one and the trace varies
in the range (0, 1]. In this case cyclic vectors Ω exist. State function reduction can
lead only to an infinite-dimensional subspace characterized by a projector with trace
smaller than 1 but larger than zero. The natural interpretation would be in terms of
finite measurement resolution. The tensor product of II1 factor and I∞ is II∞ factor
for which the trace for a projector can have arbitrarily large values. II1 factor has a
unique finite tracial state and the set of traces of projections spans unit interval. There
is uncountable number of factors of type II but hyper-finite factors of type II1 are the
exceptional ones and physically most interesting.

(c) Factors of type III correspond to an extreme situation. In this case the projection
operators E spanning the factor have either infinite or vanishing trace and there exists
an isometry mapping EH to H meaning that the projection operator spans almost
all of H. All projectors are also related to each other by isometry. Factors of type
III are smallest if the factors are regarded as sub-algebras of a fixed B(H) where H
corresponds to isomorphism class of Hilbert spaces. Situation changes when one speaks
about concrete representations. Also now hyper-finite factors are exceptional.

(d) Von Neumann algebras define a non-commutative measure theory. Commutative von
Neumann algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice
versa.

4.1.2 Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann
algebras.

(a) A weight of von Neumann algebra is a linear map from the set of positive elements
(those of form a∗a) to non-negative reals.
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(b) A positive linear functional is weight with ω(1) finite.

(c) A state is a weight with ω(1) = 1.

(d) A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

(e) A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling.
For factors that are separable or finite, two projections are equivalent if and only if they have
the same trace. Factors of type In the values of trace are equal to multiples of 1/n. For a
factor of type I∞ the value of trace are 0, 1, 2, .... For factors of type II1 the values span the
range [0, 1] and for factors of type II∞ n the range [0,∞). For factors of type III the values
of the trace are 0, and ∞.

4.1.3 Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

(a) Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for
x > 0. Assume by Riesz lemma the representation of ω as a vacuum expectation value:
ω = (·Ω,Ω), where Ω is cyclic and separating state.

(b) Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (4.1)

whereM∗ is the pre-dual ofM defined by linear functionals inM. One hasM ∗
∗ =M.

(c) The conjugation x→ x∗ is isometric inM and defines a mapM→ L2(M) via x→ xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

(d) Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar
decomposition analogous that for complex number and generalizing polar decomposition
of linear operators by replacing (almost) unitary operator with anti-unitary J . Therefore
∆ = S∗S > 0 is positive self-adjoint and J an anti-unitary involution. The non-triviality
of ∆ reflects the fact that the state is not trace so that hermitian conjugation represented
by S in the state space brings in additional factor ∆1/2.

(e) What x can be is puzzling to physicists. The restriction fermionic Fock space and thus
to creation operators would imply that ∆ would act non-trivially only vacuum state so
that ∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of
tensor product of Fock spaces for which vacua are conjugates: only this gives cyclic and
separating state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

(a) The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

(b) The latter formula implies that M and M′ are isomorphic algebras. The first formula
implies that a one parameter group of modular automorphisms characterizes partially
the factor. The physical meaning of modular automorphisms is discussed in [A9, A16]
∆ is Hermitian and positive definite so that the eigenvalues of log(∆) are real but can
be negative. ∆it is however not unitary for factors of type II and III. Physically the
non-unitarity must relate to the fact that the flow is contracting so that hermiticity as
a local condition is not enough to guarantee unitarity.
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(c) ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with
ω and depending on it. The ∆:s associated with different ω:s are related by a unitary
inner automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly non-
trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and
III.

4.1.4 Modular automorphisms

Modular automorphisms of factors are central for their classification.

(a) One can divide the automorphisms to inner and outer ones. Inner automorphisms
correspond to unitary operators obtained by exponentiating Hermitian Hamiltonian
belonging to the factor and connected to identity by a flow. Outer automorphisms do
not allow a representation as a unitary transformations although log(∆) is formally a
Hermitian operator.

(b) The fundamental group of the type II1 factor defined as fundamental group group of
corresponding II∞ factor characterizes partially a factor of type II1. This group consists
real numbers λ such that there is an automorphism scaling the trace by λ. Fundamental
group typically contains all reals but it can be also discrete and even trivial.

(c) Factors of type III allow a one-parameter group of modular automorphisms, which can
be used to achieve a partial classification of these factors. These automorphisms define
a flow in the center of the factor known as flow of weights. The set of parameter values
λ for which ω is mapped to itself and the center of the factor defined by the identity
operator (projector to the factor as a sub-algebra of B(H)) is mapped to itself in the
modular automorphism defines the Connes spectrum of the factor. For factors of type
IIIλ this set consists of powers of λ < 1. For factors of type III0 this set contains only
identity automorphism so that there is no periodicity. For factors of type III1 Connes
spectrum contains all real numbers so that the automorphisms do not affect the identity
operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays
are replaced by the sub-spaces defined by the action of M as basic units. M-dimension is
not integer valued in general. The so called standard module has a cyclic separating vector
and each factor has a standard representation possessing antilinear involution J such that
M′ = JMJ holds true (note that J changes the order of the operators in conjugation). The
inclusions of factors define modules having interpretation in terms of a finite measurement
resolution defined by M.

4.1.5 Crossed product as a way to construct factors of type III

By using so called crossed product crossedproduct for a group G acting in algebra A one
can obtain new von Neumann algebras. One ends up with crossed product by a two-
step generalization by starting from the semidirect product G / H for groups defined as
(g1, h1)(g2, h2) = (g1h1(g2), h1h2) (note that Poincare group has interpretation as a semidi-
rect product M4 /SO(3, 1) of Lorentz and translation groups). At the first step one replaces
the group H with its group algebra. At the second step the the group algebra is replaced
with a more general algebra. What is formed is the semidirect product A / G which is sum
of algebras Ag. The product is given by (a1, g1)(a2, g2) = (a1g1(a2), g1g2). This construction
works for both locally compact groups and quantum groups. A not too highly educated
guess is that the construction in the case of quantum groups gives the factorM as a crossed
product of the included factor N and quantum group defined by the factor space M/N .

The construction allows to express factors of type III as crossed products of factors of type
II∞ and the 1-parameter group G of modular automorphisms assignable to any vector which
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is cyclic for both factor and its commutant. The ergodic flow θλ scales the trace of projector
in II∞ factor by λ > 0. The dual flow defined by G restricted to the center of II∞ factor
does not depend on the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of
the kernel of the dual flow defined as set of values of flow parameter λ for which the flow
in the center is trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for
factors of type IIIλ and contains all real numbers for factors of type III1 meaning that the
flow does not affect the center.

4.1.6 Inclusions and Connes tensor product

Inclusions N ⊂M of von Neumann algebras have physical interpretation as a mathematical
description for sub-system-system relation. In [K28] there is more extensive TGD colored
description of inclusions and their role in TGD. Here only basic facts are listed and the
Connes tensor product is explained.

For type I algebras the inclusions are trivial and tensor product description applies as such.
For factors of II1 and III the inclusions are highly non-trivial. The inclusion of type II1
factors were understood by Vaughan Jones [A1] and those of factors of type III by Alain
Connes [A4] .

Formally sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be
a sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be
defined as M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of
completion of M as N module is in question.

4.1.7 Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N inM matters. This position
is characterized in case of hyper-finite II1 factors by index M : N which can be said to the
dimension of M as N module and also as the inverse of the dimension defined by the trace
of the projector from M to N . It is important to notice that M : N does not characterize
either M or M, only the embedding.

The basic facts proved by Jones are following [A1] .

(a) For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(4.2)

the numbers at right hand side are known as Beraha numbers [A12] . The comments
below give a rough idea about what finiteness of principal graph means.

(b) As explained in [B4] , for M : N < 4 one can assign to the inclusion Dynkin graph
of ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie alge-
bra given in terms of its dimension and dimension r of Cartan algebra r as h =
(dimg(g)−r)/r. ForM : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed.
The Dynkin graphs of Lie algebras of SU(n), E7 and D2n+1 are however not allowed.
E6, E7, andE8 correspond to symmetry groups of tetrahedron, octahedron/cube, and
icosahedron/dodecahedron. The group for octahedron/cube is missing: what could this
mean?

For M : N = 4 one can assign to the inclusion an extended Dynkin graph of type
ADE characterizing Kac Moody algebra. Extended ADE diagrams characterize also
the subgroups of SU(2) and the interpretation proposed in [A21] is following-

The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There
are diagrams corresponding to infinite subgroups: A∞ corresponding to SU(2) itself,
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A−∞,∞ corresponding to circle group U(1), and infinite dihedral groups (generated by
a rotation by a non-rational angle and reflection.

One can construct also inclusions for which the diagrams corresponding to finite sub-
groups G ⊂ SU(2) are extension of An for cyclic groups, of Dn dihedral groups, and of
En with n = 6, 7, 8 for tetrahedron, cube, dodecahedron. These extensions correspond
to ADE type Kac-Moody algebras.

The extension is constructed by constructing first factor R as infinite tensor power of
M2(C) (complexified quaternions). Sub-factor R0 consists elements of of R of form
Id ⊗ x. SU(2) preserves R0 and for any subgroup G of SU(2) one can identify the
inclusion N ⊂ M in terms of N = RG0 and M = RG, where N = RG0 and M = RG

consists of fixed points of R0 and R under the action of G. The principal graph for
N ⊂M is the extended Coxeter-Dynk graph for the subgroup G.

Physicist might try to interpret this by saying that one considers only sub-algebras
RG0 and RG of observables invariant under G and obtains extended Dynkin diagram
of G defining an ADE type Kac-Moody algebra. Could the condition that Kac-Moody
algebra elements with non-vanishing conformal weight annihilate the physical states
state that the state is invariant under R0 defining measurement resolution. Besides this
the states are also invariant under finite group G? Could RG0 and RG correspond just
to states which are also invariant under finite group G.

4.1.8 Connes tensor product

The basic idea of Connes tensor product is that a sub-space generated sub-factor N takes
the role of the complex ray of Hilbert space. The physical interpretation is in terms of finite
measurement resolution: it is not possible to distinguish between states obtained by applying
elements of N .

Intuitively it is clear that it should be possible to decomposeM to a tensor product of factor
space M/N and N :

M = M/N ⊗N . (4.3)

One could regard the factor spaceM/N as a non-commutative space in which each point cor-
responds to a particular representative in the equivalence class of points defined by N . The
connections between quantum groups and Jones inclusions suggest that this space closely re-
lates to quantum groups. An alternative interpretation is as an ordinary linear space obtained
by mapping N rays to ordinary complex rays. These spaces appear in the representations
of quantum groups. Similar procedure makes sense also for the Hilbert spaces in which M
acts.

Connes tensor product can be defined in the spaceM⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from
right is equivalent with N multiplication from left so that N acts like complex numbers on
states. One can imagine variants of the Connes tensor product and in TGD framework one
particular variant appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n × n matrices acts on V from right, V can be
regarded as a space formed by m × n matrices for some value of m. If N acts from left on
W , W can be regarded as space of n× r matrices.

(a) In the first representation the Connes tensor product of spaces V and W consists of m×r
matrices and Connes tensor product is represented as the product VW of matrices as
(VW )mre

mr. In this representation the information about N disappears completely as
the interpretation in terms of measurement resolution suggests. The sum over interme-
diate states defined by N brings in mind path integral.
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(b) An alternative and more physical representation is as a state∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

(c) One can also consider two spaces V and W in which N acts from right and define Connes
tensor product for A†⊗N B or its tensor product counterpart. This case corresponds to
the modification of the Connes tensor product of positive and negative energy states.
Since Hermitian conjugation is involved, matrix product does not define the Connes
tensor product now. For m = r case entanglement coefficients should define a unitary
matrix commuting with the action of the Hermitian matrices of N and interpretation
would be in terms of symmetry. HFF property would encourage to think that this
representation has an analog in the case of HFFs of type II1.

(d) Also type In factors are possible and for them Connes tensor product makes sense if
one can assign the inclusion of finite-D matrix algebras to a measurement resolution.

4.1.9 Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A19, A9, A16] . There are
good arguments showing that in HFFs of III1 appear are relativistic quantum field theories.
In non-relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz
group is essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal
moving with at most light velocity, the von Neumann algebras commute with each other so
that ∨ product should make sense.

Some basic mathematical results of algebraic quantum field theory [A16] deserve to be listed
since they are suggestive also from the point of view of TGD.

(a) Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O+ x)
where (O + x) is the translate of O and |x| denotes Minkowski norm. Then every
projection E ∈M(O) can be written as WW ∗ with W ∈M(Oε) and W ∗W = 1. Note
that the union is not a bounded set of M4. This almost establishes the type III property.

(b) Both the complement of light-cone and double light-cone define HFF of type III1.
Lorentz boosts induce modular automorphisms.

(c) The so called split property suggested by the description of two systems of this kind
as a tensor product in relativistic QFTs is believed to hold true. This means that the
HFFs of type III1 associated with causally disjoint regions are sub-factors of factor of
type I∞. This means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFs of type III1s is induced by set theoretic
inclusions.

4.1.10 Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A19, A9, A16] . There are
good arguments showing that in HFFs of III1 appear are relativistic quantum field theories.
In non-relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz
group is essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal
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moving with at most light velocity, the von Neumann algebras commute with each other so
that ∨ product should make sense.

Some basic mathematical results of algebraic quantum field theory [A16] deserve to be listed
since they are suggestive also from the point of view of TGD.

(a) Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O+ x)
where (O + x) is the translate of O and |x| denotes Minkowski norm. Then every
projection E ∈M(O) can be written as WW ∗ with W ∈M(Oε) and W ∗W = 1. Note
that the union is not a bounded set of M4. This almost establishes the type III property.

(b) Both the complement of light-cone and double light-cone define HFF of type III1.
Lorentz boosts induce modular automorphisms.

(c) The so called split property suggested by the description of two systems of this kind
as a tensor product in relativistic QFTs is believed to hold true. This means that the
HFFs of type III1 associated with causally disjoint regions are sub-factors of factor of
type I∞. This means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFs of type III1s is induced by set theoretic
inclusions.

4.2 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD
inspired quantum measurement theory, basic vision about quantum TGD, and bosonic emer-
gence.

4.2.1 The problems

Concerning the role of factors in TGD framework there are several problems of both concep-
tual and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

(a) Under what conditions the assumptions of Tomita-Takesaki formula stating the exis-
tence of modular automorphism and isomorphy of the factor and its commutant hold
true? What is the physical interpretation of the formula M′ = JMJ relating factor
and its commutant in TGD framework?

(b) Is the identification M = ∆it sensible is quantum TGD and ZEO, where M-matrix
is “complex square root” of exponent of Hamiltonian defining thermodynamical state
and the notion of unitary time evolution is given up? The notion of state ω leading to
∆ is essentially thermodynamical and one can wonder whether one should take also a
“complex square root” of ω to get M-matrix giving rise to a genuine quantum theory.

(c) TGD based quantum measurement theory involves both quantum fluctuating degrees
of freedom assignable to light-like 3-surfaces and zero modes identifiable as classical
degrees of freedom assignable to interior of the space-time sheet. Zero modes have also
fermionic counterparts. State preparation should generate entanglement between the
quantal and classical states. What this means at the level of von Neumann algebras?

(d) What is the TGD counterpart for causal disjointness. At space-time level different
space-time sheets could correspond to such regions whereas at embedding space level
causally disjoint CDs would represent such regions.
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2. Technical problems

There are also more technical questions.

(a) What is the von Neumann algebra needed in TGD framework? Does one have a a direct
integral over factors? Which factors appear in it? Can one construct the factor as a
crossed product of some group G with direct physical interpretation and of naturally
appearing factor A? Is A a HFF of type II∞? assignable to a fixed CD? What is the
natural Hilbert space H in which A acts?

(b) What are the geometric transformations inducing modular automorphisms of II∞ in-
ducing the scaling down of the trace? Is the action of G induced by the boosts in
Lorentz group. Could also translations and scalings induce the action? What is the
factor associated with the union of Poincare transforms of CD? log(∆) is Hermitian
algebraically: what does the non-unitarity of exp(log(∆)it) mean physically?

(c) Could Ω correspond to a vacuum which in conformal degrees of freedom depends on
the choice of the sphere S2 defining the radial coordinate playing the role of complex
variable in the case of the radial conformal algebra. Does ∗-operation inM correspond
to Hermitian conjugation for fermionic oscillator operators and change of sign of super
conformal weights?

The exponent of the Kähler-Dirac action gives rise to the exponent of Kähler function as
Dirac determinant and fermionic inner product defined by fermionic Feynman rules. It is
implausible that this exponent could as such correspond to ω or ∆it having conceptual roots
in thermodynamics rather than QFT. If one assumes that the exponent of the Kähler-Dirac
action defines a “complex square root” of ω the situation changes. This raises technical
questions relating to the notion of square root of ω.

(a) Does the complex square root of ω have a polar decomposition to a product of positive
definite matrix (square root of the density matrix) and unitary matrix and does ω1/2

correspond to the modulus in the decomposition? Does the square root of ∆ have
similar decomposition with modulus equal equal to ∆1/2 in standard picture so that
modular automorphism, which is inherent property of von Neumann algebra, would not
be affected?

(b) ∆it or rather its generalization is defined modulo a unitary operator defined by some
Hamiltonian and is therefore highly non-unique as such. This non-uniqueness applies
also to |∆|. Could this non-uniqueness correspond to the thermodynamical degrees of
freedom?

4.2.2 ZEO and factors

The first question concerns the identification of the Hilbert space associated with the factors
in ZEO. As the positive or negative energy part of the zero energy state space or as the
entire space of zero energy states? The latter option would look more natural physically and
is forced by the condition that the vacuum state is cyclic and separating.

(a) The commutant of HFF given as M′ = JMJ , where J is involution transforming
fermionic oscillator operators and bosonic vector fields to their Hermitian conjugates.
Also conformal weights would change sign in the map which conforms with the view that
the light-like boundaries of CD are analogous to upper and lower hemispheres of S2 in
conformal field theory. The presence of J representing essentially Hermitian conjugation
would suggest that positive and zero energy parts of zero energy states are related by
this formula so that state space decomposes to a tensor product of positive and negative
energy states and M -matrix can be regarded as a map between these two sub-spaces.

(b) The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a
canonical representation makes the situation puzzling for a novice. The assumption
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that the vacuum is cyclic and separating means that neither creation nor annihila-
tion operators can annihilate it. Therefore Fermionic Fock space cannot appear as the
Hilbert space in the Tomita-Takesaki theorem. The paradox is circumvented if the ac-
tion of ∗ transforms creation operators acting on the positive energy part of the state
to annihilation operators acting on negative energy part of the state. If J permutes the
two Fock vacuums in their tensor product, the action of S indeed maps permutes the
tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in ZEO.

(a) In ZEO M -matrix defines time-like entanglement coefficients between positive and neg-
ative energy parts of the state. M -matrix is essentially “complex square root” of the
density matrix and quantum theory similar square root of thermodynamics. The notion
of state as it appears in the theory of HFFs is however essentially thermodynamical.
Therefore it is good to ask whether the “complex square root of state” could make sense
in the theory of factors.

(b) Quantum field theory suggests an obvious proposal concerning the meaning of the square
root: one replaces exponent of Hamiltonian with imaginary exponential of action at
T → 0 limit. In quantum TGD the exponent of Kähler-Dirac action giving exponent of
Kähler function as real exponent could be the manner to take this complex square root.
Kähler-Dirac action can therefore be regarded as a “square root” of Kähler action.

(c) The identification M = ∆it relies on the idea of unitary time evolution which is given up
in ZEO based on CDs? Is the reduction of the quantum dynamics to a flow a realistic
idea? As will be found this automorphism could correspond to a time translation or
scaling for either upper or lower light-cone defining CD and can ask whether ∆it corre-
sponds to the exponent of scaling operator L0 defining single particle propagator as one
integrates over t. Its complex square root would correspond to fermionic propagator.

(d) In this framework J∆it would map the positive energy and negative energy sectors to
each other. If the positive and negative energy state spaces can identified by isometry
then M = J∆it identification can be considered but seems unrealistic. S = J∆1/2 maps
positive and negative energy states to each other: could S or its generalization appear
in M -matrix as a part which gives thermodynamics? The exponent of the Kähler-Dirac
action does not seem to provide thermodynamical aspect and p-adic thermodynamics
suggests strongly the presence exponent of exp(−L0/Tp) with Tp chose in such manner
that consistency with p-adic thermodynamics is obtained. Could the generalization of
J∆n/2 with ∆ replaced with its “square root” give rise to padic thermodynamics and also
ordinary thermodynamics at the level of density matrix? The minimal option would be
that power of ∆it which imaginary value of t is responsible for thermodynamical degrees
of freedom whereas everything else is dictated by the unitary S-matrix appearing as
phase of the “square root” of ω.

4.2.3 Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and
the relationship between zero modes and HFFs involves further conceptual problems.

(a) The presence of zero modes means that one has a direct integral over HFFs labeled
by zero modes which by definition do not contribute to WCW line element. The real-
ization of quantum criticality in terms of Kähler-Dirac action [K29] suggests that also
fermionic zero mode degrees of freedom are present and correspond to conserved charges
assignable to the critical deformations of the pace-time sheets. Induced Kähler form
characterizes the values of zero modes for a given space-time sheet and the symplectic
group of light-cone boundary characterizes the quantum fluctuating degrees of freedom.
The entanglement between zero modes and quantum fluctuating degrees of freedom is
essential for quantum measurement theory. One should understand this entanglement.
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(b) Physical intuition suggests that classical observables should correspond to longer length
scale than quantal ones. Hence it would seem that the interior degrees of freedom
outside CD should correspond to classical degrees of freedom correlating with quantum
fluctuating degrees of freedom of CD.

(c) Quantum criticality means that Kähler-Dirac action allows an infinite number of con-
served charges which correspond to deformations leaving metric invariant and there-
fore act on zero modes. Does this super-conformal algebra commute with the super-
conformal algebra associated with quantum fluctuating degrees of freedom? Could the
restriction of elements of quantum fluctuating currents to 3-D light-like 3-surfaces actu-
ally imply this commutativity. Quantum holography would suggest a duality between
these algebras. Quantum measurement theory suggests even 1-1 correspondence be-
tween the elements of the two super-conformal algebras. The entanglement between
classical and quantum degrees of freedom would mean that prepared quantum states
are created by operators for which the operators in the two algebras are entangled in
diagonal manner.

(d) The notion of finite measurement resolution has become key element of quantum TGD
and one should understand how finite measurement resolution is realized in terms of
inclusions of hyper-finite factors for which sub-factor defines the resolution in the sense
that its action creates states not distinguishable from each other in the resolution used.
The notion of finite measurement resolution suggests that one should speak about entan-
glement between sub-factors and corresponding sub-spaces rather than between states.
Connes tensor product would code for the idea that the action of sub-factors is analogous
to that of complex numbers and tracing over sub-factor realizes this idea.

(e) Just for fun one can ask whether the duality between zero modes and quantum fluctu-
ating degrees of freedom representing quantum holography could correspond to M′ =
JMJ? This interpretation must be consistent with the interpretation forced by zero
energy ontology. If this crazy guess is correct (very probably not!), both positive and
negative energy states would be observed in quantum measurement but in totally differ-
ent manner. Since this identity would simplify enormously the structure of the theory,
it deserves therefore to be shown wrong.

4.2.4 Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic
challenge. Consider first the question how HFFs of type II∞ emerge, how modular automor-
phisms act on them, and how one can understand the non-unitary character of the ∆it in an
apparent conflict with the hermiticity and positivity of ∆.

(a) The Clifford algebra at a given point of WCW(CD) (light-like 3-surfaces with ends at
the boundaries of CD) defines HFF of type II1 or possibly a direct integral of them. For
a given CD having compact isotropy group SO(3) leaving the rest frame defined by the
tips of CD invariant the factor defined by Clifford algebra valued fields in WCW(CD) is
most naturally HFF of type II∞. The Hilbert space in which this Clifford algebra acts,
consists of spinor fields in WCW(CD). Also the symplectic transformations of light-
cone boundary leaving light-like 3-surfaces inside CD can be included to G. In fact all
conformal algebras leaving CD invariant could be included in CD.

(b) The downwards scalings of the radial coordinate rM of the light-cone boundary applied
to the basis of WCW (CD) spinor fields could induce modular automorphism. These
scalings reduce the size of the portion of light-cone in which the WCW spinor fields are
non-vanishing and effectively scale down the size of CD. exp(iL0) as algebraic operator
acts as a phase multiplication on eigen states of conformal weight and therefore as
apparently unitary operator. The geometric flow however contracts the CD so that
the interpretation of exp(itL0) as a unitary modular automorphism is not possible. The
scaling down of CD reduces the value of the trace if it involves integral over the boundary
of CD. A similar reduction is implied by the downward shift of the upper boundary of
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CD so that also time translations would induce modular automorphism. These shifts
seem to be necessary to define rest energies of positive and negative energy parts of the
zero energy state.

(c) The non-triviality of the modular automorphisms of II∞ factor reflects different choices
of ω. The degeneracy of ω could be due to the non-uniqueness of conformal vacuum
which is part of the definition of ω. The radial Virasoro algebra of light-cone boundary
is generated by Ln = L∗−n, n 6= 0 and L0 = L∗0 and negative and positive frequencies are
in asymmetric position. The conformal gauge is fixed by the choice of SO(3) subgroup
of Lorentz group defining the slicing of light-cone boundary by spheres and the tips of
CD fix SO(3) uniquely. One can however consider also alternative choices of SO(3)
and each corresponds to a slicing of the light-cone boundary by spheres but in general
the sphere defining the intersection of the two light-cone does not belong to the slicing.
Hence the action of Lorentz transformation inducing different choice of SO(3) can lead
out from the preferred state space so that its representation must be non-unitary unless
Virasoro generators annihilate the physical states. The non-vanishing of the conformal
central charge c and vacuum weight h seems to be necessary and indeed can take place
for super-symplectic algebra and Super Kac-Moody algebra since only the differences of
the algebra elements are assumed to annihilate physical states.

Modular automorphism of HFFs type III1 can be induced by several geometric transforma-
tions for HFFs of type III1 obtained using the crossed product construction from II∞ factor
by extending CD to a union of its Lorentz transforms.

(a) The crossed product would correspond to an extension of II∞ by allowing a union of
some geometric transforms of CD. If one assumes that only CDs for which the distance
between tips is quantized in powers of 2, then scalings of either upper or lower boundary
of CD cannot correspond to these transformations. Same applies to time translations
acting on either boundary but not to ordinary translations. As found, the modular
automorphisms reducing the size of CD could act in HFF of type II∞.

(b) The geometric counterparts of the modular transformations would most naturally cor-
respond to any non-compact one parameter sub-group of Lorentz group as also QFT
suggests. The Lorentz boosts would replace the radial coordinate rM of the light-cone
boundary associated with the radial Virasoro algebra with a new one so that the slicing
of light-cone boundary with spheres would be affected and one could speak of a new
conformal gauge. The temporal distance between tips of CD in the rest frame would not
be affected. The effect would seem to be however unitary because the transformation
does not only modify the states but also transforms CD.

(c) Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal
gauge defining the radial coordinate of the light-cone boundary, they affect also the
definition of the conformal vacuum so that also ω is affected so that the interpretation
as a modular automorphism makes sense. The simplistic intuition of the novice suggests
that if one allows wave functions in the space of Lorentz transforms of CD, unitarity
of ∆it is possible. Note that the hierarchy of Planck constants assigns to CD preferred
M2 and thus direction of quantization axes of angular momentum and boosts in this
direction would be in preferred role.

(d) One can also consider the HFF of type IIIλ if the radial scalings by negative powers of
2 correspond to the automorphism group of II∞ factor as the vision about allowed CDs
suggests. λ = 1/2 would naturally hold true for the factor obtained by allowing only
the radial scalings. Lorentz boosts would expand the factor to HFF of type III1. Why
scalings by powers of 2 would give rise to periodicity should be understood.

The identification of M -matrix as modular automorphism ∆it, where t is complex number
having as its real part the temporal distance between tips of CD quantized as 2n and temper-
ature as imaginary part, looks at first highly attractive, since it would mean that M -matrix
indeed exists mathematically. The proposed interpretations of modular automorphisms do
not support the idea that they could define the S-matrix of the theory. In any case, the
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identification as modular automorphism would not lead to a magic universal formula since
arbitrary unitary transformation is involved.

4.2.5 Quantum criticality and inclusions of factors

Quantum criticality fixes the value of Kähler coupling strength but is expected to have also
an interpretation in terms of a hierarchies of broken conformal gauge symmetries suggesting
hierarchies of inclusions.

(a) In ZEO 3-surfaces are unions of space-like 3-surfaces at the ends of causal diamond (CD).
Space-time surfaces connect 3-surfaces at the boundaries of CD. The non-determinism
of Kähler action allows the possibility of having several space-time sheets connecting
the ends of space-time surface but the conditions that classical charges are same for
them reduces this number so that it could be finite. Quantum criticality in this sense
implies non-determinism analogous to that of critical systems since preferred extremals
can co-incide and suffer this kind of bifurcation in the interior of CD. This quantum
criticality can be assigned to the hierarchy of Planck constants and the integer n in
heff = n × h [K11] corresponds to the number of degenerate space-time sheets with
same Kähler action and conserved classical charges.

(b) Also now one expects a hierarchy of criticalities and since criticality and conformal
invariance are closely related, a natural conjecture is that the fractal hierarchy of sub-
algebras of conformal algebra isomorphic to conformal algebra itself and having confor-
mal weights coming as multiples of n corresponds to the hierarchy of Planck constants.
This hierarchy would define a hierarchy of symmetry breakings in the sense that only
the sub-algebra would act as gauge symmetries.

(c) The assignment of this hierarchy with super-symplectic algebra having conformal struc-
ture with respect to the light-like radial coordinate of light-cone boundary looks very
attractive. An interesting question is what is the role of the super-conformal alge-
bra associated with the isometries of light-cone boundary R+ × S2 which are confor-
mal transformations of sphere S2 with a scaling of radial coordinate compensating the
scaling induced by the conformal transformation. Does it act as dynamical or gauge
symmetries?

(d) The natural proposal is that the inclusions of various superconformal algebras in the hi-
erarchy define inclusions of hyper-finite factors which would be thus labelled by integers.
Any sequences of integers for which ni divides ni+1 would define a hierarchy of inclu-
sions proceeding in reverse direction. Physically inclusion hierarchy would correspond
to an infinite hierarchy of criticalities within criticalities.

4.3 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments from the point of view
of factors.

4.3.1 A proposal for M-matrix

The proposed general picture reduces the core of U -matrix to the construction of S-matrix
possibly having the real square roots of density matrices as symmetry algebra. This structure
can be taken as a template as one tries to to imagine how the construction of M -matrix could
proceed in quantum TGD proper.

(a) At the bosonic sector one would have converging functional integral over WCW . This
is analogous to the path integral over bosonic fields in QFTs. The presence of Kähler
function would make this integral well-defined and would not encounter the difficulties
met in the case of path integrals.
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(b) In fermionic sector 1-D Dirac action and its bosonic counterpart imply that spinors
modes localized at string world sheets are eigenstates of induced Dirac operator with
generalized eigenvalue pkγk defining light-like 8-D momentum so that one would obtain
fermionic propagators massless in 8-D sense at light-light geodesics of embedding space.
The 8-D generalization of twistor Grassmann approach is suggestive and would mean
that the residue integral over fermionic virtual momenta gives only integral over massless
momenta and virtual fermions differ from real fermions only in that they have non-
physical polarizations so that massless Dirac operator replacing the propagator does
not annihilate the spinors at the other end of the line.

(c) Fundamental bosons (not elementary particles) correspond to wormhole contacts having
fermion and antifermion at opposite throats and bosonic propagators are composite of
massless fermion propagators. The directions of virtual momenta are obviously strongly
correlated so that the approximation as a gauge theory with gauge symmetry breaking
in almost massless sector is natural. Massivation follows necessary from the fact that
also elementary particles are bound states of two wormhole contacts.

(d) Physical fermions and bosons correspond to pairs of wormhole contacts with throats
carrying Kähler magnetic charge equal to Kähler electric charge (dyon). The absence of
Dirac monopoles (as opposed to homological magnetic monopoles due to CP2 topology)
implies that wormhole contacts must appear as pairs (also large numbers of them are
possible and 3 valence quarks inside baryons could form Kähler magnetic tripole). Hence
elementary particles would correspond to pairs of monopoles and are accompanied by
Kähler magnetic flux loop running along the two space-time sheets involved as well as
fermionic strings connecting the monopole throats.

There seems to be no specific need to assign string to the wormhole contact and if is
a piece of deformed CP2 type vacuum extremal this might not be even possible: the
Kähler-Dirac gamma matrices would not span 2-D space in this case since the CP2

projection is 4-D. Hence massless fermion propagators would be assigned only with the
boundaries of string world sheets at Minkowskian regions of space-time surface. One
could say that physical particles are bound states of massless fundamental fermions
and the non-collinearity of their four-momenta can make them massive. Therefore
the breaking of conformal invariance would be due to the bound state formation and
this would also resolve the infrared divergence problems plaguing Grassmann twistor
approach by introducing natural length scale assignable to the size of particles defined
by the string like flux tube connecting the wormhole contacts. This point is discussed
in more detail in [K26].

The bound states would form representations of super-conformal algebras so that stringy
mass formula would emerge naturally. p-Adic mass calculations indeed assume confor-
mal invariance in CP2 length scale assignable to wormhole contacts. Also the long flux
tube strings contribute to the particle masses and would explain gauge boson masses.

(e) The interaction vertices would correspond topologically to decays of 3-surface by split-
ting in complete analogy with ordinary Feynman diagrams. At the level of orbits of
partonic 2-surface the vertices would be represented by partonic 2-surfaces. In [K26]
the interpretation of scattering ampiltudes as sequences of algebraic operations for the
Yangian of super-symplectic algebra is proposed: product and co-product would define
time 3-vertex and its time reversal. At the level of fermions the diagrams reduce to
braid diagrams since fermions are “free”. At vertices fermions can however reflect in
time direction so that fermion-antifermion annihilations in classical fields can be said to
appear in the vertices.

The Yangian is generated by super-symplectic fermionic Noether charges assignable to
the strings connecting partonic 2-surfaces. The interpretation of vertices as algebraic
operations implies that all sequences of operations connecting given collections of ele-
ments of Yangian at the opposite boundaries of CD give rise to the same amplitude.
This means a huge generalization of the duality symmetry of hadronic string models
that I have proposed already earlier: the chapter [K4] is a remnant of an “idea that
came too early”. The propagators are associated with the fermionic lines identifiable as
boundaries of string world sheets. These lines are light-like geodesics of H and fermion
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lines correspond topartial wave in the space S3 of light like 8-momenta with fixed M4

momentum. For external lines M8 momentum corresponds to the M4 × CP2 quantum
numbers of a spinor harmonic.

The amplitudes can be formulated using only partonic 2-surfaces and string world sheets
and the algebraic continuation to achieve number theoretic Universality should be rather
straightforward: the parameters characterizing 2-surfaces - by conformal invariance var-
ious conformal moduli - in the algebraic extension of rationals are replaced with real
and various p-adic numbers.

(f) Wormhole contacts represent fundamental interaction vertex pairs and propagators be-
tween them and one has stringy super-conformal invariance. Therefore there are ex-
cellent reasons to expect that the perturbation theory is free of divergences. Without
stringy contributions for massive conformal excitations of wormhole contacts one would
obtain the usual logarithmic UV divergences of massless gauge theories. The fact that
physical particles are bound states of massless particles, gives good hopes of avoiding
IR divergences of massless theories.

The figures ??, ?? (http://tgdtheory.fi/appfigures/elparticletgd.jpg http://tgdtheory.
fi/appfigures/tgdgrpahs.jpg) in the appendix of this book illustrate the relationship be-
tween TGD diagrammatics, QFT diagrammatics and stringy diagrammatics. In [K26] a
more detailed construction based on the generalization of twistor approach and the idea that
scattering amplitudes represent sequences of algebraic operation in the Yangian of super-
symplectic algebra, is considered.

4.3.2 Quantum TGD as square root of thermodynamics

ZEO (ZEO) suggests strongly that quantum TGD corresponds to what might be called
square root of thermodynamics. Since fermionic sector of TGD corresponds naturally to
a hyper-finite factor of type II1, and super-conformal sector relates fermionic and bosonic
sectors (WCW degrees of freedom), there is a temptation to suggest that the mathematics
of von Neumann algebras generalizes: in other worlds it is possible to speak about the
complex square root of ω defining a state of von Neumann algebra [A19] [K28]. This square
root would bring in also the fermionic sector and realized super-conformal symmetry. The
reduction of determinant with WCW vacuum functional would be one manifestation of this
supersymmetry.

The exponent of Kähler function identified as real part of Kähler action for preferred ex-
tremals coming from Euclidian space-time regions defines the modulus of the bosonic vac-
uum functional appearing in the functional integral over WCW. The imaginary part of Kähler
action coming from the Minkowskian regions is analogous to action of quantum field theo-
ries and would give rise to interference effects distinguishing thermodynamics from quantum
theory. This would be something new from the point of view of the canonical theory of
von Neumann algebra. The saddle points of the imaginary part appear in stationary phase
approximation and the imaginary part serves the role of Morse function for WCW.

The exponent of Kähler function depends on the real part of t identified as Minkowski
distance between the tips of CD. This dependence is not consistent with the dependence of
the canonical unitary automorphism ∆it of von Neumann algebra on t [A19], [K28] and the
natural interpretation is that the vacuum functional can be included in the definition of the
inner product for spinors fields of WCW . More formally, the exponent of Kähler function
would define ω in bosonic degrees of freedom.

Note that the imaginary exponent is more natural for the imaginary part of Kähler action
coming from Minkowskian region. In any case, one has combination of thermodynamics
and QFT and the presence of thermodynamics makes the functional integral mathematically
well-defined.

Number theoretic vision requiring number theoretical universality suggests that the value of
CD size scales as defined by the distance between the tips is expected to come as integer
multiples of CP2 length scale - at least in the intersection of real and p-adic worlds. If
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this is the case the continuous faimily of modular automorphisms would be replaced with a
discretize family.

4.3.3 Quantum criticality and hierarchy of inclusions

Quantum criticality and related fractal hierarchies of breakings of conformal symmetry could
allow to understand the inclusion hierarchies for hyper-finite factors. Quantum criticality
- implied by the condition that the Kähler-Dirac action gives rise to conserved currents
assignable to the deformations of the space-time surface - means the vanishing of the second
variation of Kähler action for these deformations. Preferred extremals correspond to these
4-surfaces and M8 − M4 × CP2 duality would allow to identify them also as associative
(co-associative) space-time surfaces.

Quantum criticality is basically due to the failure of strict determinism for Kähler action and
leads to the hierarchy of dark matter phases labelled by the effective value of Planck constant
heff = n × h. These phases correspond to space-time surfaces connecting 3-surfaces at the
ends of CD which are multi-sheeted having n conformal equivalence classes.

Conformal invariance indeed relates naturally to quantum criticality. This brings in n discrete
degrees of freedom and one can technically describe the situation by using n-fold singular
covering of the embedding space [K11]. One can say that there is hierarchy of broken confor-
mal symmetries in the sense that for heff = n×h the sub-algebra of conformal algebras with
conformal weights coming as multiples of n act as gauge symmetries. This implies that clas-
sical symplectic Noether charges vanish for this sub-algebra. The quantal conformal charges
associated with induced spinor fields annihilate the physical states. Therefore it seems that
the measured quantities are the symplectic charges and there is not need to introduce any
measurement interaction term and the formalism simplifies dramatically.

The resolution increases with heff/h = n. Also the number of of strings connecting partonic
2-surfaces (in practice elementary particles and their dark counterparts plus bound states
generated by connecting dark strings) characterizes physically the finite measurement res-
olution. Their presence is also visible in the geometry of the space-time surfaces through
the conditions that induced W fields vanish at them (well-definedness of em charge), and by
the condition that the canonical momentum currents for Kähler action define an integrable
distribution of planes parallel to the string world sheet. In spirit with holography, preferred
extremal is constructed by fixing string world sheets and partonic 2-surfaces and possibly
also their light-like orbits (should one fix wormhole contacts is not quite clear). If the analog
of AdS/CFT correspondence holds true, the value of Kähler function is expressible as the
energy of string defined by area in the effective metric defined by the anti-commutators of
K-D gamma matrices.

Super-symplectic algebra, whose charges are represented by Noether charges associated with
strings connecting partonic 2-surfaces extends to a Yangian algebra with multi-stringy gen-
erators [K26]. The better the measurement resolution, the larger the maximal number of
strings associated with the multilocal generator.

Kac-Moody type transformations preserving light-likeness of partonic orbits and possibly also
the light-like character of the boundaries of string world sheets carrying modes of induced
spinor field underlie the conformal gauge symmetry. The minimal option is that only the
light-likeness of the string end world line is preserved by the conformal symmetries. In fact,
conformal symmetries was originally deduced from the light-likeness condition for the M4

projection of CP2 type vacuum extremals.

The inclusions of super-symplectic Yangians form a hierarchy and would naturally correspond
to inclusions of hyperfinite factors of type II1. Conformal symmetries acting as gauge trans-
formations would naturally correspond to degrees of freedom below measurement resolution
and would correspond to included subalgebra. As heff increases, infinite number of these
gauge degrees of freedom become dynamical and measurement resolution is increased. This
picture is definitely in conflict with the original view but the reduction of criticality in the
increase of heff forces it.



4.4 Finite measurement resolution and HFFs 48

4.3.4 Summary

On basis of above considerations it seems that the idea about “complex square root” of the
state ω of von Neumann algebras might make sense in quantum TGD. Also the discretized
versions of modular automorphism assignable to the hierarchy of CDs would make sense and
because of its non-uniqueness the generator ∆ of the canonical automorphism could bring
in the flexibility needed one wants thermodynamics. Stringy picture forces to ask whether
∆ could in some situation be proportional exp(L0), where L0 represents as the infinitesimal
scaling generator of either super-symplectic algebra or super Kac-Moody algebra (the choice
does not matter since the differences of the generators annihilate physical states in coset
construction). This would allow to reproduce real thermodynamics consistent with p-adic
thermodynamics. Note that also p-adic thermodynamics would be replaced by its square
root in ZEO.

4.4 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the
notion of quantum M -matrix for which elements have values in sub-factor N of HFF rather
than being complex numbers. M-matrix in the factor spaceM/N is obtained by tracing over
N . The condition that N acts like complex numbers in the tracing implies that M-matrix
elements are proportional to maximal projectors to N so that M-matrix is effectively a matrix
in M/N and situation becomes finite-dimensional. It is still possible to satisfy generalized
unitarity conditions but in general case tracing gives a weighted sum of unitary M-matrices
defining what can be regarded as a square root of density matrix.

4.4.1 About the notion of observable in ZEO

Some clarifications concerning the notion of observable in zero energy ontology are in order.

(a) As in standard quantum theory observables correspond to hermitian operators acting
on either positive or negative energy part of the state. One can indeed define hermitian
conjugation for positive and negative energy parts of the states in standard manner.

(b) Also the conjugation A→ JAJ is analogous to hermitian conjugation. It exchanges the
positive and negative energy parts of the states also maps the light-like 3-surfaces at
the upper boundary of CD to the lower boundary and vice versa. The map is induced
by time reflection in the rest frame of CD with respect to the origin at the center of
CD and has a well defined action on light-like 3-surfaces and space-time surfaces. This
operation cannot correspond to the sought for hermitian conjugation since JAJ and A
commute.

(c) In order to obtain non-trivial fermion propagator one must add to Dirac action 1-
D Dirac action in induced metric with the boundaries of string world sheets at the
light-like parton orbits. Its bosonic counterpart is line-length in induced metric. Field
equations imply that the boundaries are light-like geodesics and fermion has light-like
8-momentum. This suggests strongly a connection with quantum field theory and an
8-D generalization of twistor Grassmannian approach. By field equations the bosonic
part of this action does not contribute to the Kähler action. Chern-Simons Dirac terms
to which Kähler action reduces could be responsible for the breaking of CP and T
symmetries as they appear in CKM matrix.

(d) ZEO gives Cartan sub-algebra of the Lie algebra of symmetries a special status. Only
Cartan algebra acting on either positive or negative states respects the zero energy
property but this is enough to define quantum numbers of the state. In absence of
symmetry breaking positive and negative energy parts of the state combine to form a
state in a singlet representation of group. Since only the net quantum numbers must
vanish ZEO allows a symmetry breaking respecting a chosen Cartan algebra.
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(e) In order to speak about four-momenta for positive and negative energy parts of the states
one must be able to define how the translations act on CDs. The most natural action
is a shift of the upper (lower) tip of CD. In the scale of entire CD this transformation
induced Lorentz boost fixing the other tip. The value of mass squared is identified
as proportional to the average of conformal weight in p-adic thermodynamics for the
scaling generator L0 for either super-symplectic or Super Kac-Moody algebra.

4.4.2 Inclusion of HFFs as characterizer of finite measurement resolution at the
level of S-matrix

The inclusion N ⊂M of factors characterizes naturally finite measurement resolution. This
means following things.

(a) Complex rays of state space resulting usually in an ideal state function reduction are
replaced by N -rays since N defines the measurement resolution and takes the role of
complex numbers in ordinary quantum theory so that non-commutative quantum theory
results. Non-commutativity corresponds to a finite measurement resolution rather than
something exotic occurring in Planck length scales. The quantum Clifford algebraM/N
creates physical states modulo resolution. The fact that N takes the role of gauge
algebra suggests that it might be necessary to fix a gauge by assigning to each element
of M/N a unique element of M. Quantum Clifford algebra with fractal dimension
β =M : N creates physical states having interpretation as quantum spinors of fractal
dimension d =

√
β. Hence direct connection with quantum groups emerges.

(b) The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary
and hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and
thus correspond entire spectra of Hermitian operators. The mutual non-commutativity
of eigenvalues guarantees that it is possible to speak about state function reduction for
quantum spinors. In the simplest case of a 2-component quantum spinor this means
that second component of quantum spinor vanishes in the sense that second component
of spinor annihilates physical state and second acts as element of N on it. The non-
commutativity of spinor components implies correlations between then and thus fractal
dimension is smaller than 2.

(c) The intuition about ordinary tensor products suggests that one can decompose Tr in
M as

TrM(X) = TrM/N × TrN (X) . (4.4)

Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one ex-
pects that operator inM defines an operator inM/N by a projection to the preferred
elements of M.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (4.5)

(d) Scattering probabilities in the resolution defined by N are obtained in the following
manner. The scattering probability between states |r1〉 and |r2〉 is obtained by summing
over the final states obtained by the action of N from |r2〉 and taking the analog of spin
average over the states created in the similar from |r1〉. N average requires a division
by Tr(PN ) = 1/M : N defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (4.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (4.7)
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(e) Unitarity at the level of M/N can be achieved if the unit operator Id for M can be
decomposed into an analog of tensor product for the unit operators ofM/N and N and
M decomposes to a tensor product of unitary M-matrices in M/N and N . For HFFs
of type II projection operators of N with varying traces are present and one expects a
weighted sum of unitary M-matrices to result from the tracing having interpretation in
terms of square root of thermodynamics.

(f) This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type
III1 this assumption must be given up. This might be possible if one compensates the
trace over N by dividing with the trace of the infinite trace of the projection operator
to N . This probably requires a limiting procedure which indeed makes sense for HFFs.

4.4.3 Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂M seems to boil
down to a simple rule. Replace ordinary quantum mechanics in complex number field C with
that in N . This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are
replaced with their N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix
in the state space generated by quantum Clifford algebra M/N which can be regarded
as a finite-dimensional matrix algebra with non-commuting N -valued matrix elements. This
suggests that full M -matrix can be expressed as M -matrix with N -valued elements satisfying
N -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-matrix
must be commuting hermitian N -valued operators inside every row and column. The traces
of these operators give N -averaged transition probabilities. The eigenvalue spectrum of
these Hermitian matrices gives more detailed information about details below experimental
resolution. N -hermicity and commutativity pose powerful additional restrictions on the M -
matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states with
N -valued coefficients. How this affects the situation? The non-commutativity of quantum
spinors has a natural interpretation in terms of fuzzy state function reduction meaning that
quantum spinor corresponds effectively to a statistical ensemble which cannot correspond to
pure state. Does this mean that predictions for transition probabilities must be averaged
over the ensemble defined by “quantum quantum states”?

4.4.4 Quantum fluctuations and inclusions

Inclusions N ⊂M of factors provide also a first principle description of quantum fluctuations
since quantum fluctuations are by definition quantum dynamics below the measurement
resolution. This gives hopes for articulating precisely what the important phrase “long range
quantum fluctuations around quantum criticality” really means mathematically.

(a) Phase transitions involve a change of symmetry. One might hope that the change of
the symmetry group Ga × Gb could universally code this aspect of phase transitions.
This need not always mean a change of Planck constant but it means always a leakage
between sectors of embedding space. At quantum criticality 3-surfaces would have
regions belonging to at least two sectors of H.

(b) The long range of quantum fluctuations would naturally relate to a partial or total
leakage of the 3-surface to a sector of embedding space with larger Planck constant
meaning zooming up of various quantal lengths.

(c) For M -matrix in M/N regarded as calN module quantum criticality would mean a
special kind of eigen state for the transition probability operator defined by the M -
matrix. The properties of the number theoretic braids contributing to the M -matrix
should characterize this state. The strands of the critical braids would correspond to
fixed points for Ga ×Gb or its subgroup.
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4.4.5 M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy
states give a precise formulation for M -matrix in finite measurement resolution and the
Connes tensor product involved. The original expectation that Connes tensor product could
lead to a unique M-matrix is wrong. The replacement of ω with its complex square root
could lead to a unique hierarchy of M-matrices with finite measurement resolution and allow
completely finite theory despite the fact that projectors have infinite trace for HFFs of type
III1.

(a) In ZEO the counterpart of Hermitian conjugation for operator is replaced with M →
JMJ permuting the factors. Therefore N ∈ N acting to positive (negative) energy
part of state corresponds to N → N ′ = JNJ acting on negative (positive) energy part
of the state.

(b) The allowed elements of N much be such that zero energy state remains zero energy
state. The superposition of zero energy states involved can however change. Hence one
must have that the counterparts of complex numbers are of form N = JN1J∨N2, where
N1 and N2 have same quantum numbers. A superposition of terms of this kind with
varying quantum numbers for positive energy part of the state is possible.

(c) The condition that N1i and N2i act like complex numbers in N -trace means that the
effect of JN1iJ ∨N2i and JN2iJi ∨N1i to the trace are identical and correspond to a
multiplication by a constant. IfN is HFF of type II1 this follows from the decomposition
M = M/N ⊗ N and from Tr(AB) = Tr(BA) assuming that M is of form M =
MM/N × PN . Contrary to the original hopes that Connes tensor product could fix the
M-matrix there are no conditions on MM/N which would give rise to a finite-dimensional
M-matrix for Jones inclusions. One can replaced the projector PN with a more general
state if one takes this into account in ∗ operation.

(d) In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with
a state ωN in the sense of factors looks more natural. This means that the counterpart
of ∗ operation exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S =
J∆1/2. The exchange of N1 and N2 gives altogether ∆. In this case the KMS condition
ωN (AB) = ωN∆A) guarantees the effective complex number property [A2] .

(e) Quantum TGD more or less requires the replacement of ω with its “complex square root”
so that also a unitary matrix U multiplying ∆ is expected to appear in the formula for S
and guarantee the symmetry. One could speak of a square root of KMS condition [A2]
in this case. The QFT counterpart would be a cutoff involving path integral over the
degrees of freedom below the measurement resolution. In TGD framework it would mean
a cutoff in the functional integral over WCW and for the modes of the second quantized
induced spinor fields and also cutoff in sizes of causal diamonds. Discretization in terms
of braids replacing light-like 3-surfaces should be the counterpart for the cutoff.

(f) If one has M -matrix in M expressible as a sum of M -matrices of form MM/N ×MN
with coefficients which correspond to the square roots of probabilities defining density
matrix the tracing operation gives rise to square root of density matrix in M .

4.4.6 Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition proba-
bilities in which N -trace or its generalization in terms of state ωN is needed. One might
however dream of something more.

(a) Maybe there exists a universal M-matrix in the sense that the same M-matrix gives
the M-matrices in finite measurement resolution for all inclusions N ⊂M. This would
mean that one can write

M = MM/N ⊗MN (4.8)
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for any physically reasonable choice of N . This would formally express the idea that M
is as near as possible to M-matrix of free theory. Also fractality suggests itself in the
sense that MN is essentially the same as MM in the same sense as N is same asM. It
might be that the trivial solution M = 1 is the only possible solution to the condition.

(b) MM/N would be obtained by the analog of TrN or ωN operation involving the “complex
square root” of the state ω in case of HFFs of type III1. The QFT counterpart would
be path integration over the degrees of freedom below cutoff to get effective action.

(c) Universality probably requires assumptions about the thermodynamical part of the uni-
versal M-matrix. A possible alternative form of the condition is that it holds true only
for canonical choice of “complex square root” of ω or for the S-matrix part of M :

S = SM/N ⊗ SN (4.9)

for any physically reasonable choice N .

(d) In TGD framework the condition would say that the M-matrix defined by the Kähler-
Dirac action gives M-matrices in finite measurement resolution via the counterpart of
integration over the degrees of freedom below the measurement resolution.

An obvious counter argument against the universality is that if the M-matrix is “complex
square root of state” cannot be unique and there are infinitely many choices related by
a unitary transformation induced by the flows representing modular automorphism giving
rise to new choices. This would actually be a well-come result and make possible quantum
measurement theory.

In the section “Handful of problems with a common resolution” it was found that one can add
to both Kähler action and Kähler-Dirac action a measurement interaction term characterizing
the values of measured observables. The measurement interaction term in Kähler action is
Lagrange multiplier term at the space-like ends of space-time surface fixing the value of
classical charges for the space-time sheets in the quantum superposition to be equal with
corresponding quantum charges. The term in Kähler-Dirac action is obtained from this by
assigning to this term canonical momentum densities and contracting them with gamma
matrices to obtain Kähler-Dirac gamma matrices appearing in 3-D analog of Dirac action.
The constraint terms would leave Kähler function and Kähler metric invariant but would
restrict the vacuum functional to the subset of 3-surfaces with fixed classical conserved charges
(in Cartan algebra) equal to their quantum counterparts.

4.4.7 Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector
and also now it makes sense to speak about measurement resolution. Hence one can ask
whether Connes tensor product should be posed as a constraint on space-like entanglement.
The interpretation could be in terms of the formation of bound states. The reducibility
of HFFs and inclusions means that the tensor product is not uniquely fixed and ordinary
entanglement could correspond to this kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The inter-
pretation of Connes tensor product would be as the variance of the states with respect to
some subgroup of U(n) associated with the measurement resolution: the analog of color
confinement would be in question.

4.4.8 2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A14] are playing with very formal looking formal structures
obtained by replacing vectors with vector spaces. Direct sum and tensor product serve as the
basic arithmetic operations for the vector spaces and one can define category of n-tuples of
vectors spaces with morphisms defined by linear maps between vectors spaces of the tuple.
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n-tuples allow also element-wise product and sum. They obtain results which make them
happy. For instance, the category of linear representations of a given group forms 2-vector
spaces since direct sums and tensor products of representations as well as n-tuples make
sense. The 2-vector space however looks more or less trivial from the point of physics.

The situation could become more interesting in quantum measurement theory with finite
measurement resolution described in terms of inclusions of hyper-finite factors of type II1.
The reason is that Connes tensor product replaces ordinary tensor product and brings in
interactions via irreducible entanglement as a representation of finite measurement resolution.
The category in question could give Connes tensor products of quantum state spaces and
describing interactions. For instance, one could multiply M -matrices via Connes tensor
product to obtain category of M -matrices having also the structure of 2-operator algebra.

(a) The included algebra represents measurement resolution and this means that the infinite-
D sub-Hilbert spaces obtained by the action of this algebra replace the rays. Sub-
factor takes the role of complex numbers in generalized QM so that one obtains non-
commutative quantum mechanics. For instance, quantum entanglement for two systems
of this kind would not be between rays but between infinite-D subspaces corresponding
to sub-factors. One could build a generalization of QM by replacing rays with sub-spaces
and it would seem that quantum group concept does more or less this: the states in
representations of quantum groups could be seen as infinite-dimensional Hilbert spaces.

(b) One could speak about both operator algebras and corresponding state spaces modulo
finite measurement resolution as quantum operator algebras and quantum state spaces
with fractal dimension defined as factor space like entities obtained from HFF by divid-
ing with the action of included HFF. Possible values of the fractal dimension are fixed
completely for Jones inclusions. Maybe these quantum state spaces could define the
notions of quantum 2-Hilbert space and 2-operator algebra via direct sum and tensor
production operations. Fractal dimensions would make the situation interesting both
mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

(a) Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF
containing included algebras replaced with direct sum of included HFFs.

(b) The tensor products for quantum state spaces and quantum operator algebras are not
anymore trivial. The condition that measurement algebras act effectively like complex
numbers would require Connes tensor product involving irreducible entanglement be-
tween elements belonging to the two HFFs. This would have direct physical relevance
since this entanglement cannot be reduced in state function reduction. The category
would defined interactions in terms of Connes tensor product and finite measurement
resolution.

(c) The sequences of super-conformal symmetry breakings identifiable in terms of inclusions
of super-conformal algebras and corresponding HFFs could have a natural description
using the 2-Hilbert spaces and quantum 2-operator algebras.

4.5 Questions about quantum measurement theory in Zero Energy
Ontology

The following summary about quantum measurement theory in ZEO is somewhat out-of-date
and somewhat sketchy. For more detailed view see [K17, K27, K2].

4.5.1 Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time
scale imply the conditions at shorter time scales. On the other hand, in shorter time scales
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the inclusion would be deeper and would give rise to a larger reducibility of the representation
of N in M. Formally, as N approaches to a trivial algebra, one would have a square root of
density matrix and trivial S-matrix in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) =
Tr[P+M

†P−M ], where P+ and P− are projectors to positive and negative energy energy
N -rays. The projectors give rise to the averaging over the initial and final states inside N
ray. The reduction could continue step by step to shorter length scales so that one would
obtain a sequence of inclusions. If the U -process of the next quantum jump can return the
M -matrix associated with M or some larger HFF, U process would be kind of reversal for
state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams
and wild actions to the age when most decisions relate to the routine daily activities; the
progress of science from macroscopic to microscopic scales; even biological decay processes:
all these have an intriguing resemblance to the fractal state function reduction process pro-
ceeding to shorter and shorter time scales. Since this means increasing thermality of M -
matrix, U process as a reversal of state function reduction might break the second law of
thermodynamics.

The conservative option would be that only the transformation of intentions to action by U
process giving rise to new zero energy states can bring in something new and is responsible
for evolution. The non-conservative option is that the biological death is the U -process of
the next quantum jump leading to a new life cycle. Breathing would become a universal
metaphor for what happens in quantum Universe. The 4-D body would be lived again and
again.

4.5.2 quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable
space-time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined
by the Kähler function depends however only on the partonic 3-surface X3, and one must be
able to assign to a given quantum state the most probable X3 - call it X3

max - depending on
its quantum numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic
and Z0 charge) as well as classical gravitational fields created by the partons. This picture is
very similar to that of quantum field theories relying on path integral except that the path
integral is restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine
convergence and that 4-D dynamics is deterministic apart from the delicacies due to the 4-D
spin glass type vacuum degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is
that the needed phase factor corresponds to either Chern-Simons type action or an action
describing the interaction of the induced gauge field with the charges associated with the
braid strand. This action would be defined for the induced gauge fields. YM action seems to
be excluded since it is singular for light-like 3-surfaces associated with the light-like wormhole
throats (not only

√
det(g3) but also

√
det(g4) vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct gauge

charges. Kind of electric-magnetic duality should relate the normal components Fni of the
gauge fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation
is in terms of quantum gravitational holography.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means
that their values as a function of measurement resolution time scale are fixed by internal
consistency. Also quantum criticality leads to the same conclusion. Obviously a kind of
bootstrap approach suggests itself.
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4.5.3 Quantum measurements in ZEO

ZEO based quantum measurement theory leads directly to a theory of conscious entities.
The basic idea is that state function reduction localizes the second boundary of CD so that
it becomes a piece of light-cone boundary (more precisely δM4

± × CP2).

Repeated reductions are possible as in standard quantum measurement theory and leave the
passive boundary of CD. Repeated reduction begins with U process generating a superposi-
tion of CDs with the active boundary of CD being de-localized in the moduli space of CDs,
and is followed by a localization in this moduli space so that single CD is the outcome. This
process tends to increase the distance between the ends of the CD and has interpretation as
a space-time correlate for the flow of subjective time.

Self as a conscious entity corresponds to this sequence of repeated reductions on passive
boundary of CD. The first reduction at opposite boundary means death of self and its
re-incarnation at the opposite boundary of CD. Also the increase of Planck constant and
generation of negentropic entanglement is expected to be associated with this state function
reduction.

Weak form of NMP is the most plausible variational principle to characterize the state func-
tion reduction. It does not require maximal negentropy gain for state function reductions but
allows it. In other words, the outcome of reduction is n-dimensional eigen space of density
matrix space but this space need not have maximum possible dimension and even 1-D ray is
possible in which case the entanglement negentropy vanishes for the final state and system
becomes isolated from the rest of the world. Weak form of NMP brings in free will and
can allow also larger negentropy gain than the strong form if n is a product of primes. The
beauty of this option is that one can understand how the generalization of p-adic length scale
hypothesis emerges.

4.6 Miscellaneous

The following considerations are somewhat out-of-date: hence the title “Miscellaneous”.

4.6.1 Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M -matrix with
physically acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal field
theory suggest that Connes tensor product is essentially equivalent with the fusion rules for
conformal fields defined by the Clifford algebra elements of CH(CD) (4-surfaces associated
with 3-surfaces at the boundary of causal diamond CD in M4), extended to local fields in
M4 with gamma matrices acting on WCW spinor s assignable to the partonic boundary
components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms
of Connes tensor product [A21] and refers to the work of Wassermann about the fusion of
loop group representations as a demonstration of the possibility to formula the fusion rules
in terms of Connes tensor product [A7] .

Fusion rules are indeed something more intricate that the näıve product of free fields expanded
using oscillator operators. By its very definition Connes tensor product means a dramatic
reduction of degrees of freedom and this indeed happens also in conformal field theories.

(a) For non-vanishing n-point functions the tensor product of representations of Kac Moody
group associated with the conformal fields must give singlet representation.

(b) The ordinary tensor product of Kac Moody representations characterized by given value
of central extension parameter k is not possible since k would be additive.
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(c) A much stronger restriction comes from the fact that the allowed representations must
define integrable representations of Kac-Moody group [A8] . For instance, in case of
SU(2)k Kac Moody algebra only spins j ≤ k/2 are allowed. In this case the quantum
phase corresponds to n = k+ 2. SU(2) is indeed very natural in TGD framework since
it corresponds to both electro-weak SU(2)L and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical
states would replace näıve tensor product with something more intricate. The näıvest ap-
proach would start from M4 local variants of gamma matrices since gamma matrices generate
the Clifford algebra Cl associated with CH(CD). This is certainly too näıve an approach.
The next step would be the localization of more general products of Clifford algebra ele-
ments elements of Kac Moody algebras creating physical states and defining free on mass
shell quantum fields. In standard quantum field theory the next step would be the introduc-
tion of purely local interaction vertices leading to divergence difficulties. In the recent case
one transfers the partonic states assignable to the light-cone boundaries δM4

±(mi)× CP2 to
the common partonic 2-surfaces X2

V along X3
L,i so that the products of field operators at the

same space-time point do not appear and one avoids infinities.

The remaining problem would be the construction an explicit realization of Connes tensor
product. The formal definition states that left and right N actions in the Connes tensor
productM⊗NM are identical so that the elements nm1⊗m2 and m1⊗m2n are identified.
This implies a reduction of degrees of freedom so that free tensor product is not in question.
One might hope that at least in the simplest choices for N characterizing the limitations of
quantum measurement this reduction is equivalent with the reduction of degrees of freedom
caused by the integrability constraints for Kac-Moody representations and dropping away of
higher spins from the ordinary tensor product for the representations of quantum groups. If
fusion rules are equivalent with Connes tensor product, each type of quantum measurement
would be characterized by its own conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided by
quantum field theories. In [K7] a rather precise vision about generalized Feynman diagrams
is developed and the challenge is to relate this vision to Connes tensor product.

4.6.2 Connection with topological quantum field theories defined by Chern-
Simons action

There is also connection with topological quantum field theories (TQFTs) defined by Chern-
Simons action [A10] .

(a) The light-like 3-surfaces X3
l defining propagators can contain unitary matrix character-

izing the braiding of the lines connecting fermions at the ends of the propagator line.
Therefore the modular S-matrix representing the braiding would become part of prop-
agator line. Also incoming particle lines can contain similar S-matrices but they should
not be visible in the M -matrix. Also entanglement between different partonic boundary
components of a given incoming 3-surface by a modular S-matrix is possible.

(b) Besides CP2 type extremals MEs with light-like momenta can appear as brehmstrahlung
like exchanges always accompanied by exchanges of CP2 type extremals making possi-
ble momentum conservation. Also light-like boundaries of magnetic flux tubes having
macroscopic size could carry light-like momenta and represent similar brehmstrahlung
like exchanges. In this case the modular S-matrix could make possible topological quan-
tum computations in q 6= 1 phase [K1] . Notice the somewhat counter intuitive impli-
cation that magnetic flux tubes of macroscopic size would represent change in quantum
jump rather than quantum state. These quantum jumps can have an arbitrary long
geometric duration in macroscopic quantum phases with large Planck constant [K10] .

There is also a connection with topological QFT defined by Chern-Simons action allowing
to assign topological invariants to the 3-manifolds [A10] . If the light-like CDs X3

L,i are
boundary components, the 3-surfaces associated with particles are glued together somewhat
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like they are glued in the process allowing to construct 3-manifold by gluing them together
along boundaries. All 3-manifold topologies can be constructed by using only torus like
boundary components.

This would suggest a connection with 2+1-dimensional topological quantum field theory
defined by Chern-Simons action allowing to define invariants for knots, links, and braids and
3-manifolds using surgery along links in terms of Wilson lines. In these theories one consider
gluing of two 3-manifolds, say 3-spheres S3 along a link to obtain a topologically non-trivial
3-manifold. The replacement of link with Wilson lines in S3#S3 = S3 reduces the calculation
of link invariants defined in this manner to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-
manifolds are glued together along link so that a singular 3-manifolds with a book like
structure are possible. The allowance of CDs which are not boundaries, typically 3-D light-
like throats of wormhole contacts at which induced metric transforms from Minkowskian to
Euclidian, brings in additional richness of structure. If the scaling factor of CP2 metric can
be arbitrary large as the quantization of Planck constant predicts, this kind of structure
could be macroscopic and could be also linked and knotted. In fact, topological condensation
could be seen as a process in which two 4-manifolds are glued together by drilling light-like
CDs and connected by a piece of CP2 type extremal.

5 The idea of Connes about inherent time evolution of
certain algebraic structures from TGD point of view

Jonathan Disckau asked me about what I think about the proposal of Connes represented
in the summary of progress of noncommutative geometry in ”Noncommutative Geometry
Year 2000” [A6] (see https://arxiv.org/abs/math/0011193) that certain mathematical
structures have inherent time evolution coded into their structure.

I have written years ago about Connes’s proposal. At that time I was trying to figure out
how to understand the construction of scattering amplitudes in the TGD framework and the
proposal of Connes looked attractive. Later I had to give up this idea. However, the basic
idea is beautiful. One should only replace the notion of time evolution from a one-parameter
group of automorphisms to something more interesting. Also time evolution as increasing
algebraic complexity is a more attractive interpretation.

The inclusion hierarchies of hyperfinite factors (HFFs) - closely related to the work of Connes
- are a key element of TGD and crucial for understanding evolutionary hierarchies in TGD.
Is it possible that mathematical structure evolves in time in some sense? The TGD based
answer is that quantum jump as a fundamental evolutionary step - moment of subjective
time evolution - is a necessary new element. The sequence of moments of consciousness as
quantum jumps would have an interpretation as hopping around in the space of mathematical
structures leading to increasingly complex structures.

The generalization of the idea of Connes is discussed in this framework. In particular, the
inclusion hierarchies of hyper-finite factors, the extension hierarchies of rationals, and fractal
inclusion hierarchies of subalgebras of supersymplectic algebra isomorphic with the entire
algebra are proposed to be more or less one and the same thing in TGD framework.

The time evolution operator of Connes could corresponds to super-symplectic algebra (SSA)
to the time evolution generated by exp(iL0τ) so that the operator ∆ of Connes would be
identified as ∆ = exp(L0). This identification allows number theoretical universality if τ is
quantized. Furthermore, one ends up with a model for the subjective time evolution by
small state function reductions (SSFRs) for SSA with SSAn gauge conditions: the unitary
time evolution for given SSFR would be generated by a linear combination of Virasoro
generators not annihilating the states. This model would generalize the model for harmonic
oscillator in external force allowing exact S-matrix.

https://arxiv.org/abs/math/0011193
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5.1 Connes proposal and TGD

In this section I develop in more detail the analog of Connes proposal in TGD framework.

5.1.1 What does Connes suggest?

One must first make clear what the automorphism of HFFs discovered by Connes is.

1. Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. I have described the theory
earlier [K18, K12].

First some definitions.

(a) Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for
x > 0. Assume by Riesz lemma the representation of ω as a vacuum expectation value:
ω = (·Ω,Ω), where Ω is cyclic and separating state.

(b) Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (5.1)

whereM∗ is the pre-dual ofM defined by linear functionals inM. One hasM ∗
∗ =M.

(c) The conjugation x→ x∗ is isometric inM and defines a mapM→ L2(M) via x→ xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

(d) Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar
decomposition analogous that for complex number and generalizing polar decomposition
of linear operators by replacing (almost) unitary operator with anti-unitary J . Therefore
∆ = S∗S > 0 is positive self-adjoint and J an anti-unitary involution. The non-triviality
of ∆ reflects the fact that the state is not trace so that hermitian conjugation represented
by S in the state space brings in additional factor ∆1/2.

(e) What x can be is puzzling to physicists. The restriction fermionic Fock space and thus
to creation operators would imply that ∆ would act non-trivially only vacuum state so
that ∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of
tensor product of Fock spaces for which vacua are conjugates: only this gives cyclic and
separating state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

(a) The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

(b) The latter formula implies that M and M′ are isomorphic algebras. The first formula
implies that a one parameter group of modular automorphisms characterizes partially
the factor. The physical meaning of modular automorphisms is discussed in [A9, A16]
∆ is Hermitian and positive definite so that the eigenvalues of log(∆) are real but can
be negative. ∆it is however not unitary for factors of type II and III. Physically the
non-unitarity must relate to the fact that the flow is contracting so that hermiticity as
a local condition is not enough to guarantee unitarity.

(c) ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with
ω and depending on it. The ∆:s associated with different ω:s are related by a unitary
inner automorphism so that their equivalence classes define an invariant of the factor.
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Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly non-
trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and
III.

The definition of ∆it reduces in eigenstate basis of ∆ to the definition of complex function
dit. Note that is positive so that the logarithm of d is real.

In TGD framework number theoretic universality poses additional conditions. In diagonal
basis elog(d)it must exist. A simply manner to solve the conditions is e = exp(m/r) existing
p-adically for an extension of rational allowing r:th root of e. This requires also quantization
of as a root of unity so that the exponent reduces to a root of unity.

2. Modular automorphisms

Modular automorphisms of factors are central for their classification.

(a) One can divide the automorphisms to inner and outer ones. Inner automorphisms
correspond to unitary operators obtained by exponentiating Hermitian Hamiltonian
belonging to the factor and connected to identity by a flow. Outer automorphisms do
not allow a representation as a unitary transformations although log(∆) is formally a
Hermitian operator.

(b) The fundamental group of the type II1 factor defined as fundamental group group of cor-
responding II∞ factor characterizes partially a factor of type II1. This group consists of
real numbers λ such that there is an automorphism scaling the trace by λ. Fundamental
group typically contains all reals but it can be also discrete and even trivial.

(c) Factors of type III allow a one-parameter group of modular automorphisms, which can
be used to achieve a partial classification of these factors. These automorphisms define
a flow in the center of the factor known as flow of weights. The set of parameter values
λ for which ω is mapped to itself and the center of the factor defined by the identity
operator (projector to the factor as a sub-algebra of B(H)) is mapped to itself in the
modular automorphism defines the Connes spectrum of the factor. For factors of type
IIIλ this set consists of powers of λ < 1. For factors of type III0 this set contains only
identity automorphism so that there is no periodicity. For factors of type III1 Connes
spectrum contains all real numbers so that the automorphisms do not affect the identity
operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays
are replaced by the sub-spaces defined by the action of M as basic units. M-dimension is
not integer valued in general. The so called standard module has a cyclic separating vector
and each factor has a standard representation possessing antilinear involution J such that
M′ = JMJ holds true (note that J changes the order of the operators in conjugation). The
inclusions of factors define modules having interpretation in terms of a finite measurement
resolution defined by M.

3. Objections against the idea of Connes

One can represent objections against this idea.

(a) Ordinary time evolution in wave mechanics is a unitary automorphism, so that in this
framework they would not have physical meaning but act as gauge transformations. If
outer automorphisms define time evolutions, they must act as gauge transformations.
One would have an analog of gauge field theory in HFF. This would be of course highly
interesting: when I gave up the idea of Connes, I did not consider this possibility. Super-
symplectic algebras having fractal structure are however extremely natural candidate
for defining HFF and there is infinite number of gauge conditions.

(b) An automorphism is indeed in question so that the algebraic system would not be
actually affected. Therefore one cannot say that HFF has inherent time evolution and
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time. However, one can represent in HFF dynamical systems obeying this inherent time
evolution. This possibility is highly interesting as a kind of universal gauge theory.

On the other hand, outer automorphisms affect the trace of the projector defining
the identity matrix for a given factor. Does the scaling factor Λ represent some kind
of renormalization operation? Could it relate to the action of scalings in the TGD
framework where scalings replace time translations at the fundamental level? What
the number theoretic vision of TGD could mean? Could this quantize the continuous
spectrum of the scalings Λ for HFFs so that they belong to the extension? Could one
have a spectrum of Λ for each extension of rationals? Are different extensions related
by inclusions of HFFs?

(c) The notion of time evolution itself is an essentially Newtonian concept: selecting a
preferred time coordinate breaks Lorentz invariance. In TGD however time coordinate
is replace by scaling parameter and the situation changes.

(d) The proposal of Connes is not general enough if evolution is interpreted as an increase
of complexity.

For these reasons I gave up the automorphism proposed by Connes as a candidate for defining
time evolution giving rise to scattering amplitudes in TGD framework.

5.1.2 Two views about TGD

The two dual views about what TGD is described briefly in [L25].

(a) Physics as geometry of the world of ”world of classical worlds” (WCW) identified as the
space of space-time surfaces in M4×CP2 [K23]. Twistor lift of TGD [K25] implies that
the space-time surfaces are minimal surfaces which can be also regarded as extermals of
the Kähler action. This implies holography required by the general coordinate invariance
in TGD framework.

(b) TGD as generalized number theory forcing to generalize physics to adelic physics [L8]
fusing real physics as correlate of sensory experience and various p-adic physics as corre-
lates of cognition. Now space-times are naturally co-associative surfaces in complexified
M8 (complexified octonions) defined as ”roots” of octonionic polynomials determined
by polynomials with rational coefficients [L20, L21, L29]. Now holography extends
dramatically: finite number of rational numbers/roots of rational polynomial/points of
space-time region dictate it.

M8−H duality relates these two views and is actually a generalization of Fourier transform
and realizes generalization of momentum-position duality.

5.1.3 The notion of time evolution in TGD

Concerning various time evolutions in TGD, the general situation is now rather well under-
stood.

There are two quantal time evolutions: geometric one assignable to single CD and and
subjective time evolution which reflects the generalization of point-like particle to a 3-surface
and the introduction of CD as 4-D perceptive field of particle in ZEO [L17].

(a) Geometric time evolution corresponds to the standard scattering amplitudes for which I
have a general formula now in terms of zero energy ontology (ZEO) [L28, L20, L21, L29].
The analog of S-matrix corresponds to entanglement coefficients between members of
zero energy state at opposite boundaries of causal diamond (CD).

(b) Subjective time evolution of conscious entity corresponds to a sequence of ”small” state
function reductions (SSFRs) as moments of consciousness: each SSFR is preceded by an
analog of unitary time evolution, call it U . SSFRs are the TGD counterparts of ”weak”
measurements.
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U(t) is generated by the scaling generator L0 scaling light-like radial coordinate of light-
cone boundary and is a generalization of corresponding operator in superconformal and
string theories and defined for super-symplectic algebras acting as isometries of the world
of classical worlds (WCW) [L29]. U(t) is not the exponential of energy as a generator
of time translation as in QFTs but an exponential of the mass squared operator and
corresponds to the scaling of radial light-like coordinate r of the light-like boundary of
CD: r is analogous to the complex coordinate z in conformal field theories.

Also ”big” SFRs (BSFRs) are possible and correspond to ”ordinary” SFRs and in TGD
framework mean death of self in the universal sense and followed by reincarnation as
time reversed subjective time evolution [L13].

(c) There is also classical time evolution at the level of space-time surfaces. Here the
assumption that X4 belongs to H = M4 × CP2 defines Minkowski coordinates of M4

as almost unique space-time coordinates of X4 is the M4 projection of X4 is 4-D. This
generalizes also to the case of M8. Symmetries make it possible to identify an essentially
a unique time coordinate.

This means enormous simplification. General coordinate invariance is a marvellous
symmetry but it leads to the problem of specifying space-time coordinates that is finding
preferred coordinates. This seems impossible since 3-metric is dynamical. M4 provides a
fixed reference system and the problem disappears. M4 is dynamical by its Minkowskian
signature and one can speak about classical signals.

(d) There is also classical time evolution for the induced spinor fields. At the level of H the
spinor field is a superposition of modes of the massless Dirac operator (massless in 8-D
sense). This spinor field is free and second quantized. Second quantization of induced
spinor trivializes and this is absolutely crucial for obtaining scattering amplitudes for
fermions and avoiding the usual problems for quantization of fermions in curved back-
ground.

The induced spinor field is a restriction of this spinor field to the space-time surface and
satisfies modified Dirac equation automatically. There is no need for second quantization
at the level of space-time surface and propagators etc.... are directly calculable. This is
an enormous simplification.

There are therefore as many as 4 time evolutions and subjective time evolution by BSFRs
and possibly also by SSFRs is a natural candidate for time evolution as genuine evolution as
emergence of more complex algebraic structures.

5.1.4 Could the inherent time evolution of HFF have a physical meaning in
TGD after all?

The idea about inherent time evolution defined by HFF itself as one parameter group of
outer automorphisms is very attractive by its universality: physics would become part of
mathematics.

(a) Thermodynamic interpretation, with inverse temperature identified as an analog of time
coordinate, comes first in mind but need not be the correct interpretation.

(b) Outer automorphisms should act at a very fundamental level analogous to the state
space of topological field theories. Fundamental group is after all in question! The
assignment of the S-matrix of particle physics to the outer automorphism does not
look reasonable since the time evolution would be with respect to the linear Minkowski
coordinate, which is not Lorentz invariant.

For these reasons I gave up the idea of Connes when considering it for the first time. However,
TGD inspired theory of consciousness as a generalization of quantum measurement theory
has evolved since then and the situation is different now.

The sequence of SSFRs defines subjective time evolution having no counterpart in QFTs.
Each SSFR is preceded by a unitary time evolution, which however corresponds to the
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scaling of the light-like radial coordinate of the light-cone boundary [L29] rather than time
translation. Hamiltonian is replaced with the scaling generator L0 acting as Lorentz invariant
mass squared operator so that Lorentz invariance is not lost.

Could the time evolution assignable to L0 correspond to the outer automorphism of Connes
when one poses an infinite number of gauge conditions making inner automorphisms gauge
transformations? The connection of Connes proposal with conformal field theories and
with TGD is indeed suggestive.

(a) Conformally invariant systems obey infinite number of gauge conditions stating that the
conformal generators Ln, n > 0, annihilate physical states and carry vanishing Noether
charges.

These gauge conditions bring in mind the condition that infinitesimal inner auto-
morphisms do not change the system physically. Does this mean that Connes outer
automorphism generates the time evolution and inner automorphisms act as gauge
symmetries? One would have an analog of gauge field theory in HFF.

(b) In TGD framework one has an infinite hierarchy of systems satisfying conditions
analogous to the conformal gauge conditions. The generators of the super-symplectic
algebra (SCA) acting as isometries of the ”world of classical worlds” (WCW) are
labelled by non-negative conformal weight n and it has infinite hierarchy of algebras
SCAk isomorphic to it with conformal weights given by k-multiple of those of the
entire algebra, k = 1, 2, .....

Gauge conditions state for SCAk that the generators of SCAk and its commutator
with SCA annihilate physical states. The interpretation is in terms of a hierar-
chy of improving measurement resolutions with degrees of freedom below measurement
resolution acting like gauge transformations.

The Connes automorphism would ”see” only the time evolution in the degrees of
freedom above measurement resolution and as k increases, their number would increase.

In the case of hyperfinite factors of type II1 (HFFs) the fundamental group of corresponding
factor II∞ consists of all reals: I hope I am right here.

(a) The hyperfinite factors of type II1 and corresponding factors II∞ are natural in the
TGD context. Therefore the spectrum would consist of reals unless one poses additional
conditions.

(b) Could the automorphisms correspond to the scalings of the lightcone proper time, which
replace time translations as fundamental dynamics. Also in string models scalings take
the role of time translations.

(c) In zero energy ontology (ZEO) the scalings would act in the moduli space of causal
diamonds which is finite-dimensional. This moduli space defines the backbone of the
”world of classical worlds”. WCW itself consists of a union of sub-WCs as bundle
structures over CDs [L31]. The fiber consists of space-time surfaces inside a given CD
analogous to Bohr orbits and satisfying holography reducing to generalized holomorphy.
The scalings as automorphisms scale the causal diamonds. The space of CDs is a
finite-dimensional coset space and has also other symmetry transformations.

(d) The number theoretic vision suggests a quantization of the spectrum of Λ so that for a
given extension of rationals the spectrum would belong to the extension. HFFs would
be labelled at least partially by the extensions of rationals. The recent view of M8−H
duality [L32] is dramatically simpler than the earlier view [L20, L21, ?] and predicts
that the space-time regions are determined by a pair of analytic functions with ratio-
nal coefficients forced by number theoretical universality meaning that the space-time
surfaces have interpretation also as p-adic surfaces.

The simplest analytic functions are polynomials with integer coefficients and if one
requires that the coefficients are smaller than the degree of the polynomial, the number
of polynomials is finite for a given degree. This would give very precise meaning for the
concept of number theoretic evolution.
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There would be an evolutionary hierarchy of pairs of polynomials characterized by in-
creasing complexity and one can assign to these polynomials extension of rationals
characterized by ramified primes depending on the polynomials. The ramified primes
would have interpretation as p-adic primes characterizing the space-time region consid-
ered. Extensions of rationals and ramified primes could also characterize HFFs. This
is a rather dramatic conjecture at the level of pure mathematics.

(e) Scalings define renormalization group in standard physics. Now they scale the size of
the CD. Could the scalings as automorphisms of HFFs correspond to discrete renor-
malization operations?

5.1.5 Three views about finite measurement resolution

Evolution could be seen physically as improving finite measurement resolution: this applies
to both sensory experience and cognition. There are 3 views about finite measurement
resolution (FMR) in TGD.

1. Hyper finite factors (HFFs) and FMR

HFFs are an essential part of Connes’s work and I encountered them about 15 years ago or
so [K28, K12].

The inclusions of hyper-finite factors HFFs provide one of the three - as it seems equivalent
- ways to describe finite measurement resolution (FMR) in TGD framework: the included
factor defines an analog for gauge degrees of freedom which correspond to those below mea-
surement resolution.

2. Cognitive representations and FMR

Another description for FMR in the framework of adelic physics would be in terms of cognitive
representations [L14]. First some background about M8 −H duality.

(a) There are number theoretic and geometric views about dynamics. In algebraic dynamics
at the level of M8, the space-time surfaces are roots of polynomials. There are no
partial differential equations like in the geometric dynamics at the level of H.

(b) The algebraic ”dynamics” of space-time surfaces in M8 is dictated by co-associativity,
which means that the normal space of the space-time surface is associative and thus
quaternionic. That normal space rather than tangent space must be associative became
clear last year [L20, L21].

(c) M8 − H duality maps these algebraic surfaces in M8 to H = M4 × CP2 and the
one obtains the usual dynamics based on variational principle giving minimal surfaces
which are non-linear analogs for the solutions of massless field equations. Instead of
polynomials the natural functions at the level of H are periodic functions used in Fourier
analysis [L29].

At level of complexified M8 cognitive representation would consist of points of co-associative
space-time surfaceX4 in complexifiedM8 (complexified octonions), whose coordinates belong
to extension of rationals and therefore make sense also p-adically for extension of p-adic
numbers induced by extension of rationals. M8−H duality maps the cognitive representations
to H.

Cognitive representations form a hierarchy: the larger the extension of rationals, the larger
the number of points in the extension and in the unique discretization of space-time surface.
Therefore also the measurement resolution improves.

The surprise was that the cognitive representations which are typically finite, are for the
”roots” of octonionic polynomials infinite [L20, L21]. Also in this case the density of points
of cognitive representation increases as the dimension of extensions increases.

The understanding of the physical interpretation of M8 −H duality increased dramatically
during the last half year.
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(a) X4 in M8 is highly analogous to momentum space (4-D analog of Fermi ball one might
say) and H to position space. Physical states correspond to discrete sets of points -
4-momenta - in X4. This is just the description used in particle physics for physical
states. Time and space in this description are replaced by energy and 4-momentum. At
the level of H one space-time and classical fields and one talks about frequencies and
wavelengths instead of momenta.

(b) M8 −H duality is a generalization of Fourier transform. Hitherto I have assumed that
the space-time surface in M8 is mapped to H. The momentum space interpretation at
the level of M8 however requires that the image must be a superposition of translates of
the image in plane wave with some momentum: only the translates inside some bigger
CD are allowed - this means infrared cutoff.

The total momentum as sum of momenta for two half-cones of CD in M8 is indeed
well-defined. One has a generalization of a plane wave over translational degrees of
freedom of CD and restricted to a bigger CD.

At the limit of infinitely large size for bigger CD, the result is non-vanishing only
when the sum of the momenta for two half-cones of CD vanishes: this corresponds
to conservation of 4-momentum as a consequence of Poincare invariance rather than
assumption as in the earlier approach [L29].

This generalizes the position-momentum duality of wave mechanics lost in quantum
field theory. Point-like particle becomes a quantum superposition of space-time surfaces
inside the causal diamond (CD). Plane wave is a plane wave for the superposition of
space-time surfaces inside CD having the cm coordinates of CD as argument.

3. Inclusion hierarchy of supersymplectic algebras and FMR

The third inclusion hierarchy allowing to describe finite measurement resolution is defined by
supersymplectic algebras acting as the isometries of the ”world of classical worlds” (WCW)
consisting of space-time surfaces are preferred extremals (”roots” of polynomials in M8 and
minimal surfaces satisfying infinite-D set of additional ”gauge conditions” in H).

At a given level of hierarchy generators with conformal weight larger than n act like gauge
generators as also their commutators with generators with conformal weight smaller than n
correspond to vanishing Noether charges. This defines ”gauge conditions”.

To sum up, there are therefore 3 hierarchies allowing to describe finite measurement resolution
and they must be essentially equivalent in TGD framework.

5.1.6 Three evolutionary hierarchies

There are three evolutionary hierarchies: hierarchies of extensions of extensions of... ofrationals...;
inclusions of inclusions of .... of HFFs, and inclusions of isomorphic super symplectic algebras.

1. Extensions of rationals

The extensions of rationals become algebraically increasingly complex as their dimension
increases. The co-associative space-time surfaces in M8 are ”roots” of real polynomials with
rational coefficients to guarantee number theoretical universality and this means space-time
surfaces are characterized by extension of rationals.

Each extension of rationals defines extensions for p-adic number fields and entire adele. The
interpretation is as a cognitive leap: the system’s intelligence/algebraic complexity increases
when the extension is extended further.

The extensions of extensions of .... define hierarchies with Galois groups in certain sense
products of extensions involved. Exceptional extensions are those which do not allow this
decomposition. In this case Galois group is a simple group. Simple groups are primes of
finite groups and correspond to elementary particles of cognition. Kind of fundamental, non-
decomposable ideas. Mystic might speak of pure states of consciousnesswith no thoughts.
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In the evolution by quantum jumps the dimension of extension increases in statistical sense
and evolution is unavoidable. This evolution is due to subjective time evolution by quantum
jumps, something which is in spirit with Connes proposal but replaces time evolution by a
sequence of evolutionary leaps.

2. Inclusions of HFFs as a hierarchy

HFFs are fractals. They have infinite inclusion hierarchies in which sub-HFF isomorphicto
entire HFFs is included to HFF.

Also the hierarchies of inclusions define evolutionary hierarchies: HFF which is isomorphic
with original becomes larger and in some sense more complex than the included factor. Also
now one has sequences of inclusions of inclusions of.... These sequences would correspond
to sequences for extensions of extensions... of rationals. Note that the inclusion hierarchy
would be the basic object: not only single HFF in the hierarchy.

3. Inclusions of supersymplectic algebras as an evolutionary hierarchy

The third hierarchy is defined by the fractal hierarchy of sub-algebras of supersymplectic al-
gebra isomorphic to the algebra itself. At a given level of hierarchy generators with conformal
weight larger than n correspond to gauge degrees of freedom. As n increases the number of
physical degrees of freedom above measurement resolution increases which means evolution.
This hierarchy should correspond rather concretely to that for the extensions of rationals.
These hierarchies would be essentially one and the same thing in the TGD Universe.

5.1.7 TGD based model for subjective time development

The understanding of subjective time development as sequences of SSFRs preceded by
unitary ”time” evolution has improved quite considerably recently [L29]. The idea is that the
subjective time development as a sequence of scalings at the light-cone boundary generated
by the vibrational part L̂0 of the scaling generator L0 = p2−L̂0 (L0 annihilates the physical
states). Also p-adic mass calculations use L̂0 .

For more than 10 years ago [K18, K12], I considered the possibility that Connes time
evolution operator that he assigned with thermo-dynamical time could have a significant role
in the definition of S-matrix in standard sense but had to give up the idea.

It however seems that for super-symplectic algebra L̂0 generates an outer automorphism since
the algebra has only generators with conformal with n > 0 and its extension to included also
generators with n ≤ 0 is required to introduce L0: since L0 contains annihilation operators,
it indeed generates outer automorphism in SCA. The two views could be equivalent! Whereas
Connes considered thermo-dynamical time evolution, in TGD framework the time evolution
would be subjective time evolution by SSFRs.

(a) The guess would be that the exponential of the scaling operator L0 gives the time
evolution. The problem is that L0 annihilates the physical states. The solution of
the problem would be the same as in p-adic thermodynamics. L0 decomposes as
L0 = p2− L̂0 and the vibrational part L̂0 this gives mass spectrum as eigenvalues of p2.

The thermo-dynamical state in p-adic thermodynamics is pL̂0β . This operator exists
p-adically in the p-adic number field defined by prime p.

(b) Could unitary subjective time development involve the operator exp(i2πL0τ) τ =
log(T/T0)? This requires T/T0 = exp(n/m) guaranteeing that exponential is a root of
unity for an eigenstate of L0. The scalings are discretized and scalings come as powers
of e1/m. This is possible using extensions of rationals generated by a root of e. The
unique feature of p-adics is that ep is ordinary p-adic number. This alone would give
periodic time evolution for eigenstates of L0 with integer eigenvalues n.
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5.1.8 SSA and SSAn

Supersymplectic algebra SSA has fractal hierarchies of subalgebras SSAn. The integers in
a given hierarchy are of forn n1, n1n2, n1n2n3, ... and correspond naturally to hierarchies of
inclusions of HFFs. Conformal weights are positive: n > 0. For ordinary conformal algebras
also negative weights are allowed. Yangians have only non-negative weights. This is of
utmost importance.

SSAn with generators have radial light-like conformal weights coming as multiples of n.
SSAn annihilates physical states and [SSAn, SSA] does the same. Hence the generators
with conformal weight larger than n annihilate the physical states.

What about generators with conformal weights smaller than n? At least a subset of them
need not annihilate the physical states. Since Ln are superpositions of creation operators,
the idea that analogs of coherent states could be in question.

It would be nice to have a situation in which Ln, n < m commute. [Lk, Ll] = 0 effectively
for k + l ≥ m.

The simplest way to obtain a set of effectively commuting operators is to take the generators
Lk, [m/2] < k < m, where [m/2] is nearest integer larger than m/2.

This raises interesting questions.

(a) Could the Virasoro generators O({ck}) =
∑
k∈[m/2],m] ckLk as linear combinations of

creation operators generate a set of coherent states as eigenstates of their Hermitian
conjugates.

(b) Some facts about coherent states are in order.

i. When one adds to quantum harmonic oscillator Hamiltonian oscillator a time
dependent perturbation which lasts for a finite the vacuum state evolves to an
oscillator vacuum whose position is displacemented. The displacement is complex
and is a Fourier component of the external force f(t) corresponding to the harmonic
oscillator frequency ω. Time evolution picks up only this component.

ii. Coherent state property means that the state is eigenstate of the annihilation cre-
ation operator with eivengeu α = −ig(ω) where g(omega) =

∫
f(u)exp(−iωu)du is

Fourier transform of f(t).

iii. Coherent states are not orthogonal and form an overcomplete set. The overlaps
of coherent states are proportional to a Gaussian depending on the complex
parameters characterizing them. One can however develop any state in terms of
coherent states as a unique expansion since one can represent unitary in terms of
coherent states.

iv. Coherent state obtained from the vacuum state by time evolution in presence of
f(t) by a unitary displacement operator D(α) = exp(αa† − αa). (https://en.
wikipedia.org/wiki/Displacement_operator).
The displacement operator is a unitary operator and in the general case the displace-
ment is complex. The product of two displacement operators would be apart from
a phase factor a displacement operator associated with the sum of displacements.

v. Harmonic oscillator coherent states are indeed maximally classical since wave pack-
ets have minimal width in both q and p space. Furthermore, the classical expecta-
tion values for q and p obey classical equations of motion.

These observations raise interesting questions about how the evolution by SSFRs could
be modelled.

i. Instead of harmonic oscillator in q-space, one would have time evolution in the
space of scalings of causal diamond parameterized by the scaling parameter τ =
log(T/T0), where T can be identified as the radial light-like coordinate of light-cone
boundary.
The analogs of harmonic oscillator states would be defined in this space and would
be essentially wave packets with ground state minimizing the width of the wave
packet.

https://en.wikipedia.org/wiki/Displacement_operator
https://en.wikipedia.org/wiki/Displacement_operator


5.1 Connes proposal and TGD 67

ii. The role of harmonic oscillator Hamiltonian in absence of external force would be
taken by the generator L̂0 (L0 = p2 − L̂0 acts trivially) and gives rise to mass
squared quantization. The situation would be highly analogous to that in p-adic
thermodynamics. The role of ω would be taken by the minimal conformal weight
hmin such that the eigenvalues of L0 are its multiples. It seems that this weight
must be equal to hmin = 1.
The commutations of ~L0 with Lk, k > 0 would be as for L0 so what the replacement
should not affect the situation.

iii. The scaling parameter τ is analogous to the spatial coordinate q for the harmonic
oscillator. Can one identify the analog of the external force f(t) acting during
unitary evolution between two SSFRs? Or is it enough to use only the analog of
g(ω → hmin = 1) - that is the coefficients Ck.
To identify f(t), one needs a time coordinate t. This was already identified as
τ . This one would have q = t, which looks strange. The space in which time
evolution is the space of scalings and the time evolutions are scalings and thus time
evolution means translation in this space. The analog for this would be Hamiltonian
H = i~d/dq.
Number theoretical universality allows only the values of τ = r/s whose exponents
give roots of unity. Also exp(nτ) makes sense p-adically for these values. This
would mean that the Fourier transform defining g would become discrete and be
sum over the values f(τ = r/s).

iv. What happens if one replaces L̂0 with L0. In this case one would have the replace-
ment of ω with hvac = 0. Also the analog of Fourier transform with zero frequency
makes sense. L̂0 = p2−L0 is the most natural choice for the Hamiltonian defining
the time evolution operator but is trivial. Could ∆iτ describe the inherent time
evolution. It would be outer automorphism since it is not defined solely in terms
of SCA. So: could one have ∆ = exp(L̂0) so that ∆iτ coincide with exp(iL̂0τ)?
This would mean the identification

∆ = exp(L̂0) ,

which is a positive definite operator. The exponents coming from exp(iL0τ) can
be number theoretically universal if τ = log(T/T0) is a rational number implying
T/T0 = exp(r/s), which is possible number theoretically) and the extension of
rationals contains some roots of e.

v. Could one have ∆ = L0? Also now that positivity condition would be satisfied if
SSA conformal weights satisfy n > 0.
The problem with this operation is that it is not number theoretically universal since
the exponents exp(ilog(n)τ) do not exist p-adically without introducing infinite-D
extension of p-adic number making log(n) well-defined.
What is however intriguing is that the ”time” evolution operator ∆iτ in the eigen-
state basis would have trace equal to Tr(∆iτ )

∑
d(n)niτ , where d(n) is the de-

generacy of the state. This is a typical zeta function: for Riemann Zeta one has
d(n) = 1.
For ∆ = exp(L0) option Tr(∆iτ ) =

∑
d(n)exp(inτ) exists for τ = r/s if r:th root

of e belongs to the extension of p-adics.

To sum up, one would have Gaussian wave packet as harmonic oscillator vacuum in the
space of scaled variants of CD. The unitary time evolution associated with SSFR would
displace the peak of the wave packet to a larger scalings. The Gaussian wave function
in the space of scaled CDs has been proposed earlier.

Could this time evolution make sense and be even realistic?

(a) The analogs of harmonic oscillator states are defined in the space of scalings as Gaussians
and states obtained from them using oscillator operators. There would be a wave
function in the moduli space of CDs analogous to a state of harmonic oscillator.
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(b) SSFR following the time evolutions would project to an eigenstate of harmonic oscillator
having in general displaced argument. The unitary displacement operator D should
commute with the operators having the members of zero energy states at the passive
boundary of CD as eigenstates. This poses strong conditions. At least number theoretic
measurements could satisfy these conditions.

(c) SSFRs are identified as weak measurements as near as possible to classical measure-
ments. Time evolution by the displacement would be indeed highly analogous to clas-
sical time evolution for theeharmonic oscillator.

(d) The unitary displacement operator corresponds to the arbitrary external force on the
harmonic oscillator and it seems that it would be selected in SSFR for the unitary
evolution after SSFR. This means fixing the coefficients Ck in the operator

∑
CkLk.

What is the subjective ”time” evolution operator when in the case of SSAn?

(a) The scaling analog of the unitary displacement operator D as D =
∑
exp(

∑
CkLk −

CkL−k) is highly suggestive and would take the oscillator vacuum to a coherent state.
Coefficients Ck would be proportional to τ . There would be a large number of choices
for the unitary displacement operator. One can also consider complex values of τ since
one has complexified M8.

(b) There should be a normalization for the coefficients: without this it is not possible to
talk about a special value of τ does not make sense. For instance, the sum of their
moduli squared could be equal to 1. This would give interpretation as a quantum state
in the degrees of freedom considered. The width of the Gaussian would increase slowly
during the unitary time evolution and be proportional to log(T/T0).

The width of the Gaussian would increase slowly as a function of T during the unitary
time evolution and be proportional to log(T/T0). The condition that ck are proportional
the same complex number times τ is too strong.

(c) The arbitrariness in the choice of Ck would bring in a kind of non-determinism as a
selection of this superposition. The ability to engineer physical systems is in conflict
with the determinism of classical physics and also difficult to understand in standard
quantum physics. Could one interpret this choice as an analog for engineering a
Hamiltonian as in say quantum computation or build-up of an electric circuit for some
purpose? Could goal directed action correspond to this choice?

If so engineerable degrees of freedom would correspond to intermediate degrees of
freedom associated with Lk, [m/2] ≤ k ≤ m. They would be totally absent for k = 1
and this would correspond to a situation analogous to the standard physics without any
intentional action.

6 The dynamics of SSFRs as quantum measurement cas-
cades in the group algebra of Galois group

Adelic physics [L7, L9] is a proposal for the physics of both sensory experience having real
physics as correlate and cognition having various p-adic physics as correlates. Adele is a
book-like structure formed by real numbers and the extensions of p-adic number fields in-
duced by a given extension of rationals with the pages of the book glued together along its
back consisting of numbers belonging to the extension of rationals. This picture general-
izes to space-time level. Adelic physics relies on the notion of cognitive representation as
unique number theoretic discretization of the space-time surface. This discretization has also
fermionic analog in terms of spinor structure associated with the group algebra of the Galois
group of extension.

Adelic physics, M8 − H duality, and zero energy ontology lead (ZEO) to a proposal that
the dynamics involved with “small” state function reductions (SSFRs) as counterparts of
weak measurements could be basically number theoretical dynamics with SSFRs identified as
reduction cascades leading to completely un-entangled state in the space of wave functions in
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Galois group of extension of rationals identifiable as wave functions in the space of cognitive
representations. As a side product a prime factorization of the order of Galois group is
obtained.

The result looks even more fascinating if the cognitive dynamics is a representation for the
dynamics in real degrees of freedom in finite resolution characterized by the extension of
rationals. If cognitive representations represent reality approximately, this indeed looks very
natural and would provide an analog for adele formula expressing the norm of a rational as
the inverse of the product of is p-adic norms.

6.1 Adelic physics very briefly

Number theoretic vision leading to adelic physics [L7] provides a general formulation of
TGD complementary to the vision [K23] (http://tinyurl.com/sh42dc2) about physics as
geometry of “world of classical words” (WCW).

(a) p-Adic number fields and p-adic space-time sheets serve as correlates of cognition. Adele
is a Cartesian product of reals and extensions of all p-adic number fields induced by
given extension of rationals. Adeles are thus labelled by extensions of rationals, and one
has an evolutionary hierarchy labelled by these extensions. The large the extension, the
more complex the extension which can be regarded as n−D space in K sense, that is
with K-valued coordinates.

(b) Evolution is assigned with the increase of algebraic complexity occurring in statistical
sense in BSFRs, and possibly also during the time evolution by unitary evolutions and
SSFRs following them. Indeed, in [L24] (http://tinyurl.com/quofttl) I considered
the possibility that the time evolution of self in this manner could be induced by an
iteration of polynomials - at least in approximate sense. Iteration is a universal manner
to produce fractals as Julia sets and this would lead to the emergence of Mandelbrot and
Julia fractals and their 4-D generalizations. In the sequel will represent and argument
that the evolution as iterations could hold true in exact sense.

Cognitive representations are identified as intersection of reality and various p-adicities
(cognition). At space-time level they consist of points of embedding space H = M4 ×
CP2 or M8 (M8 −H duality [L4, L5, L6] allows to consider both as embedding space)
having preferred coordinates - M8 indeed has almost unique linear M8 coordinates for
a given octonion structure.

(c) Given extension of given number field K (rationals or extension of rationals) is char-
acterized by its Galois group leaving K - say rationals - invariant and mapping prod-
ucts to products and sums to sums. Given extension E of rationals decomposes to
extension EN of extension EN−1 of ... of extension E1 - denote it by E ≡ HN =
EN ◦ EN−1... ◦ E1. It is represented at the level of classical space-time dynamics in
M8 (http://tinyurl.com/quofttl) by a polynomial P which is functional composite
P = PN ◦ PN−1 ◦ ... ◦ P1. with Pi(0) = 0. The Galois group of G(E) has the Galois
group HN−1 = G(EN−1 ◦ ... ◦ E1) as a normal subgroup so that G(E)/HN−1 is group.

The elements of G(E) allow a decomposition to a product g = hN−1 × hN−1 × ... and
the order of G(E) is given as the product of orders of Hk: n = n0 × .. × nN−1. This
factorization of prime importance also from quantum point of view. Galois groups with
prime order do not allow this decomposition and the maximal decomposition and are
actually cyclic groups Zp of prime order so that primes appear also in this manner.

Second manner for primes to appear is as ramified primes pram of extension for which
the p-adic dynamics is critical in a well-defined sense since the irreducible polynomial
with rational coefficients defining the extension becomes reducible (decomposes into a
product) in order O(p) = 0. The p-adic primes assigned to elementary particles in
p-adic calculation have been identified as ramified primes but also the primes labelling
prime extensions possess properties making them candidates for p-adic primes.

Iterations correspond to the sequence Hk = G◦k0 of powers of generating Galois groups
for the extension of K serving as a starting point. The order of Hk is the power nk0 of

http://tinyurl.com/sh42dc2
http://tinyurl.com/quofttl
http://tinyurl.com/quofttl
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integer n0 =
∏
pki0i . Now new primes emerges in the decomposition of n0. Evolution

by iteration is analogous to a unitary evolution as exiHt power of Hamiltonian, where t
parameter takes the role of k .

(d) The complexity of extension is characterized by the orders n and the orders nk as also
the number N of the factors. In the case of iterations of extension the limit of large N
gives fractal.

(e) Galois group acts in the space of cognitive representations and for Galois extensions
for which Galois group has same order as extensions, it is natural do consider quantum
states as wave functions in G(E) forming n-D group algebra. One can assign to the
group algebra also spinor structure giving rise to D = 2M/2 fermionic states where one
has N = 2M or N = 2M+1). One can also consider chirality constraints reducing D by
a power of 2. An attractive idea is that this spinor structure represents many-fermion
states consisting of M/2 fermion modes and providing representation of the fermionic
Fock space in finite measurement resolution.

6.2 Number theoretical state function reductions as symmetry break-
ing cascades and prime factorizations

The proposed picture has very important quantal implications and allows to interpret number
theoretic quantum measurement as a number theoretic analog for symmetric breaking cascade
and also as a factorization of an integer into primes.

(a) The wave functions in G(E) - elements of group algebra of G(E) can be decomposed
to tensor products of wave functions in G(E)/HN−1 and HN−1: these wave functions
in general represent entangled states. One can decompose the wave functions in HN−1
in similar manner and the process can be continued so that one obtains a maximal de-
composition allowing no further decomposition for any factor. These non-decomposable
Galois groups have prime order since its group algebra as Hilbert space of prime dimen-
sion has no decomposition into tensor product.

(b) In state function reduction of wave function G(E) the density matrices associated with
pairs G(E)/HN−1 and HN−1 are measured. The outcome is an eigenstate or eigen-space
and gives rise to symmetry breaking from G(E) ≡ HN to EN ×HN−1. The sequence
of state function reductions should lead to a maximal symmetry breaking correspond-
ing to a wave function as a produce of those associaetd with Galois groups of prime
order. This define a prime factorization of the dimension n of Galois group/extension

to n =
∏N
i=1 p

k
i ! The moments of consciousness for self would correspond to prime

factorizations! Self would be number theoretician quite universally!

Also also the fermionic cognitive representation based on finite-D Fock states defined by
spinor components of G(E) is involved. The interpretation of Fock state basis as a a basis of
Boolean algebra in TGD: the spinor structure of WCW could be representation for Boolean
logic as a “square root” of Kähler geometry of WCW. Cognition indeed involves also Boolean
logic.

6.3 SSFR as number theoretic state function reduction cascade and
factorization of integer

A highly interesting unanswered question is following. “Small” state function reductions
(SSFRs) define the life cycle of self as their sequence. What are the degrees of freedom where
SSFRs occur?

(a) SSFRs take place at the active boundary of CD which shifts in statistical sense towards
future in the sequence of state function reductions. State at the passive boundary is not
changed.
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(b) The idea that quantum randomness could correspond to classical chaos (or complexity)
associated with the iteration of polynomials (Mandelbrot and Julia fractals) [L24] led
to reconsider the hypothesis that the polynomial representing space-time decomposes
to a product P = P2(T − r)× P1(r). T corresponds to the distance between the tips of
CD and r = t to the radial coordinate of M4 assignable to the passive boundary of CD
and equal to time coordinate t. Pi(0) = 0 is assumed to hold true.

P2 would change in SSFRs whereas P1 and state at passive boundary would not. SSFRs
(analogous to so called weak measurements) at active boundary would give rise to sen-
sory input and various associations - Maya in Eastern terminology. P1 would correspond
to the unchanging part of self - “soul” or real self as one might say.

I was also led to consider a simplified hypothesis that P2 is obtained as iteration P2 =
Q◦n1 in n:th n unitary evolution preceding SSFR. One would start from some iterate
Q◦k1 . This would reduce quantum dynamics to iteration of polynomials and to a deep
connection with Mandelbrot and Julia fractals but it was quite clear why this would be
true.

(c) The mere factorization P = P2 × P1 implies that the Galois groups associated with
active and passive boundary of CD commute and number theoretic state function re-
duction cascade for the wave functions in G(E) for the extension determined by P2 at
active boundary could correspond to SSFR. Or course, also other commuting degrees
of freedom are possible but number theoretic degrees of freedom could be the most
important degrees of freedom involved with SSFRs.

6.4 The quantum dynamics of dark genes as factorization of primes

Gene level provides a fascinating application of this picture.

Thiscontribution was inspired by discussion with Bruno Marchal about his with title ”Do
the laws of physics apply to the mind?” (https://tinyurl.com/ycls2bpt). Bruno Marchal
is a representative of computationalism, which might be called idealistic and Bruno believes
that physics follows from computationalism. The somewhat mystical notion of self-reference
is believed to lead to consciousness . I do not share this view. The gist of the posting comes
towards end where I describe how computationalism generalizes to quantum computational-
ism in TGD generalizing also the notion of quantum computation. What conscious problem
solving is? This is the question to be discussed.

(a) As found, dark photons and dark protons forming DNA codons as triplets could corre-
spond to triplet representations for prime factor Z3 of Galois group of Z6. Codon and
conjugate codon could in turn correspond to the prime factor Z2 of Galois group Z6 so
that double strand would correspond to Z6 suggested by findings of Mills [L2] and TGD
inspired model color vision [L11].

(b) DNA codons could correspond to extension with Galois group Z3, and one can consider
an entire hierarchy of extensions of extensions of .. .extensions with dimensions ni sat-
isfying thus n =

∏N
i=1 ni and having Z6 as subgroup at the lowest level of the hierarchy.

The number N of factors would be the number of polynomials in the functional com-
position and thus define a kind of abstraction levels (abstractions are thoughts about
thoughts about..., maps of maps of ...). N is expected to increase in evolution.

(c) Could this abstraction hierarchy be realized at gene level? Genes decompose into tran-
scribed regions - exons - and introns. Could different decomposition of genes to exons
and introns correspond to different values of N and ni and to different Galois groups.
Could genes themselves form larger composites?

Could genomes form even large structures such as chromosomes with larger Galois
groups. Years ago I considered the possibility of a collective gene expression based on
the collective MB of organelle, organ, or even population: could this correspond to an
extension associated with several genomes?

(d) Could SSFR correspond to a sequence of symmetry breakings for the Galois groups
of these structures decomposing them to sub-groups? Number theoretic interpretation

https://tinyurl.com/ycls2bpt
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would in terms of decompositions of integers to primes! Genome would be a quantum
computer performing number theory!

(e) Metabolic energy feed would increasing heff would also increase the orders ni = heff/h0
of the extensions appearing in the composition of extensions and thus the orders of
polynomial factors Pi in the functional composite defining the extensions. Therefore
the decompositions would be dynamical.

Metabolic energy feed requires BSFR changing the arrow of time if metabolic energy
feed is actually feed of negative energy to environment. The emergence of a new prime
factorization would require BSFR. That the time evolution by iterations would not re-
quire BSFR would support the proposal that time evolution by BSFRs could be induced
by iteration dynamics for the polynomial P2 assignable to the active boundary of CD.

6.5 The relationship of TGD view about consciousness to compu-
tationalism

This text was inspired by discussion with Bruno Marchal about his with title ”Do the laws
of physics apply to the mind?” (https://tinyurl.com/ycls2bpt). Bruno Marchal is a
representative of computationalism, which might be called idealistic and Bruno believes that
physics follows from computationalism. The somewhat mystical notion of self-reference is
believed to lead to consciousness.

I do not share this view. The gist of the posting comes towards end where I describe how
computationalism generalizes to quantum computationalism in TGD generalizing also the
notion of quantum computation. What conscious problem solving is? This is the question
to be discussed.

To my view computationalism is one of the failed approaches to consciousness - it cannot
cope with free will for instance. It however contains an essential aspect which is correct:
the idea of deterministic program leading from A to B. Problem solving be can regarded as
attempt to find this program. You fix A as initial data and try to find a program leading
from A to a final state characterized by data B. The program has duration T and can be
very long and it is not clear whether it exists at all. You try again and again and eventually
you might find it. In the real conscious problem solving this process means making guesses
so that the process cannot be deterministic.

What does this view about problem solving correspond to in ZEO? We have states A and
B represented as quantum states and we try to find quantum analog of classical program
leading from A to B in some time T which can be varied.

(a) A and B are realized as superpositions of 3-surfaces and fermionic states at them -
located at time values t=0 and t=T. T can vary. Can we find by varying T a (super-
position of) deterministic time evolution(s) - preferred extremal(s) (PE) - connecting A
and B?

In ZEO and for fixed A and T PE in general does not exist. In ideal situation (infinite
measurement resolution) and for given A and T, B is unique if it exists at all. One has
analog of Bohr orbit and the quantum analog of classical program as the superposition
of Bohr orbits starting from A and hopefully leading to B as a solution of the problem.

Remark: These superpositions can be regarded as counterparts of functions in bi-
ology and behaviors in neuroscience. The big difference to standard physics is that
time=constant snapshot in time evolution of say bio-system is replaced with quantum
superposition of very special time evolutions - PEs. Darwinian selection of also behav-
iors in biology correlates strongly with this.

(b) So: given A and B, we try to find a value of T for which superposition of PEs from A
to B exists. This would be the quantum program leading from A to B, and solving our
problem.

Actually, not only ours, universe is full of conscious entities solving problems at various
levels of self hierarchy. This takes place by a sequences of ”small” SFRs (SSFRs, weak

https://tinyurl.com/ycls2bpt
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measurements) increasing T in statistical sense and replacing the state at B with a new
one determined by state A for given value of T. At the level of conscious experience this
is sensory perception and all that which is associated with it.

Finding the solution is analogous to the halting of quantum Turing machine by ordinary
state function reduction, which corresponds in ZEO to a ”big” (ordinary) SFR (BSFR).
This would mean death in universal sense and reincarnation with reversed arrow of time
in ZEO? Or is BSFR and death failure to solve the problem? I cannot answer.

Remark: The notion of self-reference is replaced with much more concrete notion of
becoming conscious of what one was conscious of before SSFR. SSFR indeed gives rise
to conscious eperience and one avoids the infinite regress associated with genuine self-
reference. As an additional bonus one obtains evolution since the extension of rationals
characterizing space-time surfaces can increase meaning higher level of consciousness.
At the limit algebraic numbers the cognitive representation is dense subset of space-time
surface.

(c) Also finite measurement resolution and discreteness characterizing computation emerge
from number theory.

To be a solution classically means that the 3-surface(s) representing B to have fixed
discrete cognitive representation given by finite number of embedding space points in
the extension of rationals defining the adele. Quantally, quantum superpositions of these
points with fixed quantum numbers represent the desired final state.

Also Boolean logic emerges at fundamental level as square root of Kähler geometry one
might say. Many-fermion state basis defines a Boolean algebra and time evolution for
induced spinors is analogous to truth preserving Boolean map in which truths code for
infinite number of conservation laws associated with symmetries of WCW.

(d) How to find the possibly existing solution at given step (unitary evolution plus SSFR)
with t=T? One performs cognitive quantum measurements at each step represented by
SSFR. They reduce to cascades of quantum measurements for the states in the group
algebra of Galois group - call it Gal - of Galois extension considered.

Gal has hierarchical decomposition to inclusion hierarchy of normal subgroups implying
the representation of states in group algebra of Gal as entangled states in the tensor
product of the group algebras of normal sub-groups of Gal. The hope is that this Galois
cascade of SFRs produces desired state as an outcome and one can shout ”Eureka!”.

7 The relation between U-Matrix and M-matrices

S-matrix is the key notion in quantum field theories. In Zero Energy Ontology (ZEO) this
notion must be replaced with the triplet U-matrix, M-matrix, and S-matrix. U-matrix realizes
unitary time evolution in the space for zero energy states realized geometrically as dispersion
in the moduli space of causal diamonds (CDs) leaving second boundary (passive boundary)
of CD and states at it fixed.

This process can be seen as the TGD counterpart of repeated state function reductions
leaving the states at passive boundary unaffected and affecting only the member of state
pair at active boundary (Zeno effect) [K17]. In TGD inspired theory of consciousness self
corresponds to the sequence of these state function reductions [K27, K2, K24]. M-matrix
describes the entanglement between positive and negative energy parts of zero energy states
and is expressible as a hermitian square root H of density matrix multiplied by a unitary
matrix S, which corresponds to ordinary S-matrix, which is universal and depends only the
size scale n of CD through the formula S(n) = Sn. M-matrices and H-matrices form an
orthonormal basis at given CD and H-matrices would naturally correspond to the generators
of super-symplectic algebra.

The first state function reduction to the opposite boundary corresponds to what happens
in quantum physics experiments. The relationship between U- and S-matrices has remained
poorly understood.
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The original view about the relationship was a purely formal guess: M -matrices would define
the orthonormal rows of U -matrix. This guess is not correct physically and one must consider
in detail what U-matrix really means.

(a) First about the geometry of CD [K18]. The boundaries of CD will be called passive and
active: passive boundary correspond to the boundary at which repeated state function
reductions take place and give rise to a sequence of unitary time evolutions U followed
by localization in the moduli of CD each. Active boundary corresponds to the boundary
for which U induces delocalization and modifies the states at it.

The moduli space for the CDs consists of a discrete subgroup of scalings for the size of
CD characterized by the proper time distance between the tips and the sub-group of
Lorentz boosts leaving passive boundary and its tip invariant and acting on the active
boundary only. This group is assumed to be represented unitarily by matrices Λ forming
the same group for all values of n.

The proper time distance between the tips of CDs is quantized as integer multiples of the
minimal distance defined by CP2 time: T = nT0. Also in quantum jump in which the
size scale n of CD increases the increase corresponds to integer multiple of T0. Using the
logarithm of proper time, one can interpret this in terms of a scaling parametrized by
an integer. The possibility to interpret proper time translation as a scaling is essential
for having a manifest Lorentz invariance: the ordinary definition of S-matrix introduces
preferred rest system.

(b) The physical interpretation would be roughly as follows. M-matrix for a given CD
codes for the physics as we usually understand it. M-matrix is product of square root
of density matrix and S-matrix depending on the size scale of CD and is the analog of
thermal S-matrix. State function at the opposite boundary of CD corresponds to what
happens in the state function reduction in particle physics experiments. The repeated
state function reductions at same boundary of CD correspond to TGD version of Zeno
effect crucial for understanding consciousness. Unitary U-matrix describes the time
evolution zero energy states due to the increase of the size scale of CD (at least in
statistical sense). This process is dispersion in the moduli space of CDs: all possible
scalings are allowed and localization in the space of moduli of CD localizes the active
boundary of CD after each unitary evolution.

In the following I will proceed by making questions. One ends up to formulas allowing to
understand the architecture of U-matrix and to reduce its construction to that for S-matrix
having interpretation as exponential of the generator L1 of the Virasoro algebra associated
with the super-symplectic algebra.

7.1 What can one say about M-matrices?

(a) The first thing to be kept in mind is that M-matrices act in the space of zero energy
states rather than in the space of positive or negative energy states. For a given CD
M-matrices are products of hermitian square roots of hermitian density matrices acting
in the space of zero energy states and universal unitary S-matrix S(CD) acting on states
at the active end of CD (this is also very important to notice) depending on the scale
of CD:

M i = Hi ◦ S(CD) .

Here “◦” emphasizes the fact that S acts on zero energy states at active boundary only.
Hi is hermitian square root of density matrix and the matrices Hi must be orthogonal
for given CD from the orthonormality of zero energy states associated with the same
CD. The zero energy states associated with different CDs are not orthogonal and this
makes the unitary time evolution operator U non-trivial.

(b) Could quantum measurement be seen as a measurement of the observables defined by
the Hermitian generators Hi? This is not quite clear since their action is on zero energy
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states. One might actually argue that the action of this kind of observables on zero
energy states does not affect their vanishing net quantum numbers. This suggests that
Hi carry no net quantum numbers and belong to the Cartan algebra. The action of S
is restricted at the active boundary of CD and therefore it does not commute with Hi

unless the action is in a separate tensor factor. Therefore the idea that S would be an
exponential of generators Hi and thus commute with them so that Hi would correspond
to sub-spaces remaining invariant under S acting unitarily inside them does not make
sense.

(c) In TGD framework symplectic algebraas isometries of WCW is analogous to a Kac-
Moody algebra with finite-dimensional Lie-algebra replaced with the infinite-dimensional
symplectic algebra with elements characterized by conformal weights [K9, K8]. There
is a temptation to think that the Hi could be seen as a representation for this algebra
or its sub-algebra. This algebra allows an infinite fractal hierarchy of sub-algebras of
the super-symplectic algebra isomorphic to the full algebra and with conformal weights
coming as n-ples of those for the full algebra. In the proposed realization of quantum
criticality the elements of the sub-algebra characterized by n act as a gauge algebra.
An interesting question is whether this sub-algebra is involved with the realization of
M-matrices for CD with size scale n. The natural expectation is that n defines a cutoff
for conformal weights relating to finite measurement resolution.

7.2 How does the size scale of CD affect M-matrices?

(a) In standard quantum field theory (QFT) S-matrix represents time translation. The
obvious generalization is that now scaling characterized by integer n is represented by
a unitary S-matrix that is as n:th power of some unitary matrix S assignable to a CD
with minimal size: S(CD) = Sn. S(CD) is a discrete analog of the ordinary unitary
time evolution operator with n replacing the continuous time parameter.

(b) One can see M-matrices also as a generalization of Kac-Moody type algebra. Also this
suggests S(CD) = Sn, where S is the S-matrix associated with the minimal CD. S
becomes representative of phase exp(iφ). The inner product between CDs of different
size scales can n1 and n2 can be defined as

〈M i(m),M j(n)〉 = Tr(S−m ◦HiHj ◦ Sn)× θ(n−m) ,

θ(n) = 1 for n ≥ 0 , θ(n) = 0 for n < 0 .
(7.1)

Here I have denoted the action of S-matrix at the active end of CD by “◦” in order to
distinguish it from the action of matrices on zero energy states which could be seen as
belonging to the tensor product of states at active and passive boundary.

It turns out that unitarity conditions for U-matrix are invariant under the translations of
n if one assumes that the transitions obey strict arrow of time expressed by nj−ni ≥ 0.
This simplifies dramatically unitarity conditions. This gives orthonormality for M-
matrices associated with identical CDs. This inner product could be used to identify
U-matrix.

(c) How do the discrete Lorentz boosts affecting the moduli for CD with a fixed passive
boundary affect the M-matrices? The natural assumption is that the discrete Lorentz
group is represented by unitary matrices λ: the matrices M i are transformed to M i ◦ λ
for a given Lorentz boost acting on states at active boundary only.

One cannot completely exclude the possibility that S acts unitarily at both ends of zero
energy states. In this case the scaling would be interpreted as acting on zero energy
states rather than those at active boundary only. The zero energy state basis defined
by Mi would depend on the size scale of CD in more complex manner. This would not
affect the above formulas except by dropping away the “◦”.
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Unitary U must characterize the transitions in which the moduli of the active boundary of
causal diamond (CD) change and also states at the active boundary (paired with unchanging
states at the passive boundary) change. The arrow of the experienced flow of time emerges
during the period as state function reductions take place to the fixed (“passive”) boundary
of CD and do not affect the states at it. Note that these states form correlated pairs with
the changing states at the active boundary. The physically motivated question is whether
the arrow of time emerges statistically from the fact that the size of CD tends to increase in
average sense in repeated state function reductions or whether the arrow of geometric time
is strict. It turns out that unitarity conditions simplify dramatically if the arrow of time is
strict.

7.3 What Can One Say About U-Matrix?

(a) Just from the basic definitions the elements of a unitary matrix, the elements of U
are between zero energy states (M-matrices) between two CDs with possibly different
moduli of the active boundary. Given matrix element of U should be proportional to
an inner product of two M -matrices associated with these CDs. The obvious guess is
as the inner product between M-matrices

U ijm,n = 〈M i(m,λ1),M j(n, λ2)〉

= Tr(λ†1S
−m ◦HiHj ◦ Snλ2)

= Tr(S−m ◦HiHj ◦ Snλ2λ−11 )θ(n−m) .

(7.2)

Here the usual properties of the trace are assumed. The justification is that the operators
acting at the active boundary of CD are special case of operators acting non-trivially
at both boundaries.

(b) Unitarity conditions must be satisfied. These conditions relate S and the hermitian
generators Hi serving as square roots of density matrices. Unitarity conditions UU† =
U†U = 1 is defined in the space of zero energy states and read as

∑
j1n1

U ij1mn1
(U†)j1jn1n = δi,jδm,nδλ1,λ2

(7.3)

To simplify the situation let us make the plausible hypothesis contribution of Lorentz
boosts in unitary conditions is trivial by the unitarity of the representation of discrete
boosts and the independence on n.

(c) In the remaining degrees of freedom one would have

∑
j1,k≥Max(0,n−m)

Tr(Sk ◦HiHj1)Tr(Hj1Hj ◦ Sn−m−k) = δi,jδm,n . (7.4)

The condition k ≥Max(0, n−m) reflects the assumption about a strict arrow of time
and implies that unitarity conditions are invariant under the proper time translation
(n,m) → (n + r,m + r). Without this condition n back-wards translations (or rather
scalings) to the direction of geometric past would be possible for CDs of size scale n
and this would break the translational invariance and it would be very difficult to see
how unitarity could be achieved. Stating it in a general manner: time translations act
as semigroup rather than group.

(d) Irreversibility reduces dramatically the number of the conditions. Despite this their
number is infinite and correlates the Hermitian basis and the unitary matrix S. There
is an obvious analogy with a Kac-Moody algebra at circle with S replacing the phase
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factor exp(inφ) and Hi replacing the finite-dimensional Lie-algebra. The conditions
could be seen as analogs for the orthogonality conditions for the inner product. The
unitarity condition for the analog situation would involve phases exp(ikφ1) ↔ Sk and
exp(i(n−m−k)φ2)↔ Sn−m−k and trace would correspond to integration

∫
dφ1 over φ1

in accordance with the basic idea of non-commutative geometry that trace corresponds
to integral. The integration of φi would give δk,0 and δm,n. Hence there are hopes that
the conditions might be satisfied. There is however a clear distinction to the Kac-Moody
case since Sn does not in general act in the orthogonal complement of the space spanned
by Hi.

(e) The idea about reduction of the action of S to a phase multiplication is highly attractive
and one could consider the possibility that the basis of Hi can be chosen in such a way
that Hi are eigenstates of of S. This would reduce the unitarity constraint to a form in
which the summation over k can be separated from the summation over j1.

∑
k≥Max(0,n−m)

exp(iksi − (n−m− k)sj)
∑
j1

Tr(HiHj1)Tr(Hj1Hj) = δi,jδm,n .

(7.5)

The summation over k should gives a factor proportional to δsi,sj . If the correspondence
between Hi and eigenvalues si is one-to-one, one obtains something proportional to
δ(i, j) apart from a normalization factor. Using the orthonormality Tr(HiHj) = δi,j

one obtains for the left hand side of the unitarity condition

exp(isi(n−m))
∑
j1

Tr(HiHj1)Tr(Hj1Hj) = exp(isi(n−m))δi,j .

(7.6)

Clearly, the phase factor exp(isi(n −m)) is the problem. One should have Kronecker
delta δm,n instead. One should obtain behavior resembling Kac-Moody generators. Hi

should be analogs of Kac-Moody generators and include the analog of a phase factor
coming visible by the action of S.

7.4 How to obtain unitarity correctly?

It seems that the simple picture is not quite correct yet. One should obtain somehow an
integration over angle in order to obtain Kronecker delta.

(a) A generalization based on replacement of real numbers with function field on circle
suggests itself. The idea is to the identify eigenvalues of generalized Hermitian/unitary
operators as Hermitian/unitary operators with a spectrum of eigenvalues, which can be
continuous. In the recent case S would have as eigenvalues functions λi(φ) = exp(isiφ).
For a discretized version φ would have has discrete spectrum φ(n) = 2πk/n. The
spectrum of λi would have n as cutoff. Trace operation would include integration over
φ and one would have analogs of Kac-Moody generators on circle.

(b) One possible interpretation for φ is as an angle parameter associated with a fermionic
string connecting partonic 2-surface. For the super-symplectic generators suitable nor-
malized radial light-like coordinate rM of the light-cone boundary (containing boundary
of CD) would be the counterpart of angle variable if periodic boundary conditions are
assumed.

The eigenvalues could have interpretation as analogs of conformal weights. Usually
conformal weights are real and integer valued and in this case it is necessary to have
generalization of the notion of eigenvalues since otherwise the exponentials exp(isi)
would be trivial. In the case of super-symplectic algebra I have proposed that the
generating elements of the algebra have conformal weights given by the zeros of Riemann
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zeta. The spectrum of conformal weights for the generators would consist of linear
combinations of the zeros of zeta with integer coefficients. The imaginary parts of the
conformal weights could appear as eigenvalues of S.

(c) It is best to return to the definition of the U-matrix element to check whether the trace
operation appearing in it can already contain the angle integration. If one includes to
the trace operation appearing the integration over φ it gives δm,n factor and U-matrix
has elements only between states assignable to the same causal diamond. Hence one
must interpret U-matrix elements as functions of φ realized factors exp(i(sn − sm)φ).
This brings strongly in mind operators defined as distributions of operators on line
encountered in the theory of representations of non-compact groups such as Lorentz
group. In fact, the unitary representations of discrete Lorentz groups are involved now.

(d) The unitarity condition contains besides the trace also the integrations over the two
angle parameters φi associated with the two U-matrix elements involved. The left hand
side of the unitarity condition reads as

∑
k≥Max(0,n−m)

I(ksi)I((n−m− k)sj)×
∑
j1

Tr(HiHj1)Tr(Hj1Hj)

= δi,jδm,n ,

I(s) =
1

2π
×
∫
dφexp(isφ) = δs,0 .

(7.7)

Integrations give the factor δk,0 eliminating the infinite sum obtained otherwise plus the
factor δn,m. Traces give Kronecker deltas since the projectors are orthonormal. The
left hand side equals to the right hand side and one achieves unitarity. It seems that
the proposed ansatz works and the U-matrix can be reduced by a general ansatz to
S-matrix.

(e) It should be made clear that the use of eigenstates of S is only a technical trick, the
physical states need not be eigenstates. If the active parts of zero energy states where
eigenstates of S, U-matrix would not have matrix elements between different Hi and
projection operator could not change during time evolution.

7.5 What about the identification of S?

(a) S should be exponential of time the scaling operator whose action reduces to a time
translation operator along the time axis connecting the tips of CD and realized as scaling.
In other words, the shift t/T0 = m → m+ n corresponds to a scaling t/T0 = m → km
giving m+ n = km in turn giving k = 1 + n/m. At the limit of large shifts one obtains
k ' n/m→∞, which corresponds to QFT limit. nS corresponds to (nT0)× (S/T0) =
TH and one can ask whether QFT Hamiltonian could corresponds to H = S/T0.

(b) It is natural to assume that the operators Hi are eigenstates of radial scaling generator
L0 = irMd/drM at both boundaries of CD and have thus well-defined conformal weights.
As noticed the spectrum for super-symplectic algebra could also be given in terms of
zeros of Riemann zeta.

(c) The boundaries of CD are given by the equations rM = m0 and rM = T − m0, m0

is Minkowski time coordinate along the line between the tips of CD and T is the
distance between the tips. From the relationship between rM and m0 the action of
the infinitesimal translation H ≡ i∂/∂m0 can be expressed as conformal generator
L−1 = i∂/∂rM = r−1M L0. Hence the action is non-diagonal in the eigenbasis of L0

and multiplies with the conformal weights and reduces the conformal weight by one
unit. Hence the action of U can change the projection operator. For large values of
conformal weight the action is classically near to that of L0: multiplication by L0 plus
small relative change of conformal weight.
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(d) Could the spectrum of H be identified as energy spectrum expressible in terms of zeros
of zeta defining a good candidate for the super-symplectic radial conformal weights.
This certainly means maximal complexity since the number of generators of the con-
formal algebra would be infinite. This identification might make sense in chaotic or
critical systems. The functions (rM/r0)1/2+iy and (rM/r0)−2n, n > 0, are eigenmodes
of rM/drM with eigenvalues (1/2+ iy) and −2n corresponding to non-trivial and trivial
zeros of zeta.

There are two options to consider. Either L0 or iL0 could be realized as a hermitian
operator. These options would correspond to the identification of mass squared operator
as L0 and approximation identification of Hamiltonian as iL1 as iL0 making sense for
large conformal weights.

i. Suppose that L0 = rMd/drM realized as a hermitian operator would give harmonic
oscillator spectrum for conformal confinement. In p-adic mass calculations the
string model mass formula implies that L0 acts essentially as mass squared operator
with integer spectrum. I have proposed conformal confinent for the physical states
net conformal weight is real and integer valued and corresponds to the sum over
negative integer valued conformal weights corresponding to the trivial zeros and sum
over real parts of non-trivial zeros with conformal weight equal to 1/2. Imaginary
parts of zeta would sum up to zero.

ii. The counterpart of Hamiltonian as a time translation is represented by H = iL0 =
irMd/drM . Conformal confinement is now realized as the vanishing of the sum
for the real parts of the zeros of zeta: this can be achieved. As a matter fact the
integration measure drM/rM brings implies that the net conformal weight must be
1/2. This is achieved if the number of non-trivial zeros is odd with a judicious
choice of trivial zeros. The eigenvalues of Hamiltonian acting as time translation
operator could correspond to the linear combination of imaginary part of zeros of
zeta with integer coefficients. This is an attractive hypothesis in critical systems
and TGD Universe is indeed quantum critical.

7.6 What about Quantum Classical Correspondence?

Quantum classical correspondence realized as one-to-one map between quantum states and
zero modes has not been discussed yet.

(a) M -matrices would act in the tensor product of quantum fluctuating degrees of freedom
and zero modes. The assumption that zero energy states form an orthogonal basis
implies that the hermitian square roots of the density matrices form an orthonormal
basis. This condition generalizes the usual orthonormality condition.

(b) The dependence on zero modes at given boundary of CD would be trivial and induced
by 1-1 correspondence |m〉 → z(m) between states and zero modes assignable to the
state basis |m± at the boundaries of CD, and would mean the presence of factors
δz+,f(m+) × δz−,f(n−) multiplying M-matrix M i

m,n.

To sum up, it seems that the architecture of the U-matrix and its relationship to the S-
matrix is now understood and in accordance with the intuitive expectations the construction
of U-matrix reduces to that for S-matrix and one can see S-matrix as discretized counterpart
of ordinary unitary time evolution operator with time translation represented as scaling:
this allows to circumvent problems with loss of manifest Poincare symmetry encountered in
quantum field theories and allows Lorentz invariance although CD has finite size. What came
as surprise was the connection with stringy picture: strings are necessary in order to satisfy
the unitary conditions for U-matrix. Second outcome was that the connection with super-
symplectic algebra suggests itself strongly. The identification of hermitian square roots of
density matrices with Hermitian symmetry algebra is very elegant aspect discovered already
earlier. A further unexpected result was that U-matrix is unitary only for strict arrow of
time (which changes in the state function reduction to opposite boundary of CD).
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